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Introduction

Figure – Laboratoire CELIA (Centre Lasers Intenses et Applications),
crédits : u-bordeaux.fr
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Introduction

Interaction laser-plasma
L’accélération d’ions nécessite des intensités très élevées.
I = 1023W.cm−2 vient d’être atteint au CoReLS a.

a. Jin Woo Yoon et al. (2021). « Realization of laser intensity over
1023W =cm2 ». In : Optica 8.5, p. 630-635.

Production de neutrons par réaction de spallation
Pour produire le plus de neutrons possibles, on va étudier la réaction de
spallation à partir de protons incidents d’1GeV sur une cible de plomb.

Capture neutronique et nucléosynthèse
Retrouver les processus s, r et i en laboratoire à partir de l’interaction
laser-plasma plutôt que par des accélérateurs de particules conventionnels a.

a. S. N. Chen et al. (2019). « Extreme brightness laser-based neutron pulses
as a pathway for investigating nucleosynthesis in the laboratory ». In : Matter
and Radiation at Extremes 4.5, p. 054402.
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Chaîne d’interactions

Figure – Schéma décrivant les trois interactions, les outils numériques utilisés sont le
Particle-in-Cell (PIC) et le Monte-Carlo
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Interaction laser-plasma en régime relativiste
Accélération d’ions par TNSA pour I > 1018W.cm−2, – = 1—m, impulsions courtes
inférieures à la picoseconde

Figure – Photographie de l’interaction laser-solide et schéma du régime de TNSA (Target
Normal Sheath Acceleration) (Brenner et al. 2015) 1

1. C M Brenner et al. (2015). « Laser-driven x-ray and neutron source development
for industrial applications of plasma accelerators ». In : Plasma Physics and Controlled
Fusion 58.1, p. 014039.
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Interaction laser-plasma
Accélération d’ions par RPA et présentation de la cible

Figure – Accélération d’ions par RPA à gauche et photo expérimentale du ruban cryogé-
nique d’Hydrogène à droite (crédits Bruno Gonzalez-Izquierdo et Jeyathasan Viswanathan)
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outils techniques
PIC

Fonction de distribution non-maxwellienne
Résolution des équations Vlasov-Maxwell et discrétisation de la
fonction de distribution pour des macro-particules
Méthode des caractéristiques
Résolution des équations du mouvement relativistes

Figure – Principe de fonctionnement d’un code PIC (crédits : Léo Esnault)
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Création de la cible cryogénique

Figure – Production d’un ruban cryogénique d’Hydrogène 2

2. A. Girard et al. (2019). « Cryogenic hydrogen targets for proton beam generation
with ultra-intense lasers. ». In : IOP Conference Series : Materials Science and
Engineering 502, p. 012160.
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Transferts d’énergie lors de l’interaction

(a) Polarisation circulaire, régime de RPA (b) Polarisation linéaire, régime de TNSA

Figure – Graphiques montrant les transferts d’énergie entre le laser et les différentes
espèces du plasma pour une longueur de cible de 10 microns pour un laser de I =
1023W.cm−2. En bleu, l’énergie totale, en orange l’énergie du laser, en rouge l’énergie
cinétique des électrons, en violet celle des protons de la face avant, en vert celle des

protons de la face arrière et en rose l’énergie due au rayonnement des électrons
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Propagation du faisceau laser et interaction avec la cible
Simulations 1D

Paramètres :
˜ laser :

– = 1—m
I = 1023W.cm−2

a0 ≈ 190

˜ cible :
ne = 30nc
‘ = 1—m

Facteur de Lorentz :

‚ ≈
r

1 +
a20
2

= 134 (1)

Figure – Propagation de la composante Ey du laser
en unité normalisée avant interaction en polarisation

circulaire avec profil en densité de la cible.
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Figure – Propagation de la composante Ey du laser
en unité normalisée après interaction en polarisation

circulaire avec profil en densité de la cible.
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Spectres en énergie des protons accélérés
Longueur optimale dans le régime TNSA 3 :

‘0 = 0.5a0–
nc
ne

a0 ≈ 269

– = 1—m

ne = 30nc

I = 1023W.cm−2

Figure – Spectre en énergie des protons mesuré à 50—m de la cible pour la longueur
optimale de cible en TNSA (‘0 = 4.48—m) en polarisation linéaire

3. A. V. Brantov et al. (2015). « Ion energy scaling under optimum conditions of
laser plasma acceleration from solid density targets ». In : Phys. Rev. ST Accel. Beams
18 (2), p. 021301.
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Figure – Spectre en énergie des protons mesuré à 50—m de la cible pour la longueur
optimale de cible en TNSA (‘0 = 4.48—m) en polarisation circulaire

3. A. V. Brantov et al. (2015). « Ion energy scaling under optimum conditions of
laser plasma acceleration from solid density targets ». In : Phys. Rev. ST Accel. Beams
18 (2), p. 021301.
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Spectres en énergie des protons accélérés

(a) (b)

Figure – Spectres en énergie des protons mesurés à 50 —m de la cible pour la longueur
de cible de 1 micron (a) et 2 microns (b) en polarisation circulaire pour un laser avec

I = 1023 W.cm−2
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Spectre en énergie pour I = 1023 W .cm−2 pour une
polarization circulaire à 0.1 microns
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Spectre en énergie pour I = 1023 W .cm−2 pour une
polarization linéaire pour 10 microns
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Spectre pour I = 1022 W .cm−2 linéaire pour 10 microns
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Evolution de l’énergie du système pour I = 1022 W .cm−2
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Réaction de Spallation

Figure – Schéma de la réaction de spallation (Filges et Goldenbaum 2009) 4

4. D. Filges et F. Goldenbaum (2009). Handbook of Spallation Research. John Wiley
et Sons, Ltd.
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Résidus nucléaires lors de la spallation (+évaporation)

Cascade nucleaire
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Figure – Résidus nucléaires issus de la spallation d’un proton de 1GeV avec du plomb
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Spectre en énergie des neutrons
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Spectre en energie des neutrons

(a) notre simulation

(b) littérature

Figure – Spectres en énergie des neutrons a) Simulation effectuée pour des protons
incidents de 1GeV sur cible de Pb dans FLUKA b) Résultats de Chen et al. 2019 5

5. S. N. Chen et al. (2019). « Extreme brightness laser-based neutron pulses as a
pathway for investigating nucleosynthesis in the laboratory ». In : Matter and Radiation
at Extremes 4.5, p. 054402.
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Capture neutronique

Dans nos simulations : 197Au =⇒198 Au

Figure – Chemin de capture neutronique pour différents éléments selon les processus s
ou r 6

6. A. Frebel (2015). « Neutron-Capture processes and the heaviest elements ». In :
Searching for the Oldest Stars : Ancient Relics from the Early Universe. Princeton
University Press, p. 107-129.
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Conclusions et Perspectives

Interaction laser-plasma
Passer en 2D pour les simulations
Atteindre I = 1023W.cm−2 dans de nouvelles installations dédiées à
l’interaction laser-plasma

Production de neutrons par réaction de spallation
Intégrer les résultats du code PIC dans le code Monte-Carlo pour avoir une
vraie chaîne de simulation
Analyser les résultats de la campagne Apollon à l’automne 2021

Capture neutronique et nucléosynthèse
Avoir des flux de neutrons plus intenses pour passer du processus s au
processus r
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Capture neutronique dans l’or

Capture neutronique dans l'Or
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Figure – Simulation de capture neutronique dans l’Or sur FLUKA, création de l’isotope
198Au à partir de l’isotope 197Au avec en entrée des neutrons de 0.5 MeV
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Espace des phases et propagation du laser

Figure – Interaction du laser de 1 micron à I = 1023W.cm−2 avec la cible de 1 micron,
composantes du champ électrique (3 premiers graphes), profil en densité face avant puis
face arrière (2 graphes suivants), espace des phases des deux faces (2 derniers graphes)
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Espace des phases et propagation du laser

Figure – Réfléction du laser de 1 micron à I = 1023W.cm−2 avec la cible de 1 micron,
composantes du champ électrique (3 premiers graphes), profil en densité face avant puis
face arrière (2 graphes suivants), espace des phases des deux faces (2 derniers graphes)
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Changement de la longueur d’onde du laser

On est à la limite de SIT à ‘ ≈ – −→ shaping du pulse (Macchi 2013) a.
Localement, le pulse a du mal à se propager ne ≈ 200nc ≈ a0nc

a. Andrea Macchi (2013). A Superintense Laser-Plasma Interaction Theory
Primer.

On veut regarder la variation de la longueur d’onde après intéraction du
faisceau avec le flying mirror (Macchi 2013) a :

1—m . –simr . 7—m

1

–r
=

1

–

1− ˛
1 + ˛

–r = 3.6—m

a. Andrea Macchi (2013). A Superintense Laser-Plasma Interaction Theory
Primer.
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