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Introduction

FIGURE — Laboratoire CELIA (Centre Lasers Intenses et Applications),
crédits : u-bordeaux.fr
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Chaine d'interactions
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PIC : Smilei Monte-Carlo : FLUKA

FiGUrRe — Schéma décrivant les trois interactions, les outils numériques utilisés sont le
Particle-in-Cell (PIC) et le Monte-Carlo
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Interaction laser-plasma en régime relativiste

Accélération d'ions par TNSA pour [ > 10®¥W.cm™2, A = 1um, impulsions courtes
inférieures a la picoseconde

lnwh nt

reflected

laser pulse hot electron transport — hot electron sheath
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hot electrons

time

FIGURE — Photographie de I'interaction laser-solide et schéma du régime de TNSA (Target
Normal Sheath Acceleration) (BRENNER et al. 2015)*

1. C M BRENNER et al. (2015). « Laser-driven x-ray and neutron source development
for industrial applications of plasma accelerators ».
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Interaction laser-plasma

Accélération d'ions par RPA et présentation de la cible

Radiation pressure acceleration
Hole-Boring Light Sail

FIGURE — Accélération d'ions par RPA a gauche et photo expérimentale du ruban cryogé-
nique d'Hydrogéne a droite (crédits Bruno Gonzalez-1zquierdo et Jeyathasan Viswanathan)
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outils techniques

PIC

o Fonction de distribution non-maxwellienne

o Résolution des équations Vlasov-Maxwell et discrétisation de la

fonction de distribution pour des macro-particules

o Méthode des caractéristiques

o Résolution des équations du mouvement relativistes

FPm—————— -~ ————————=—=—=—=——- 1

l(a) | I b) (eau Pas de z, o I

2

| 1. Chargement des particules | | |

- | 2. Calcul de la charge et de | 1. Interpo!a-t'lon des char-nps 4. Calcul des nouve'aux l
il | la densité de courant | I aux positions des particules champs sur la grille | E
& initiale sur la grille | 2 caleul d " 3 Projection d " o
8 | I | . Calcul des nouvelles . Projection des nouvelles | 3
€ HE Calcul des champs | p05|'t10ns et vitesses des charges et denﬂ?es de | @

électriques et magnétiques | particules courant sur la grille |

| sur la grille | | Mouvement des particules \/ Création des champs |

________ =) - e e e - - - - - - - - - = - -

FIGURE — Principe de fonctionnement d'un code PIC (crédits : Léo Esnault)
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Création de la cible cryogénique

Gas —» ><]
H2 or D2

1 Extrusion nozzle

FiGURE — Production d'un ruban cryogénique d'Hydrogéne 2

2. A. GIRARD et al. (2019). « Cryogenic hydrogen targets for proton beam generation
with ultra-intense lasers. ». |n : /OF Conference Series - Materials Science and
Engineering 502, p. 012160.
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Transferts d'énergie lors de I'interaction

Energies en fonction du temps Energies en fonction du temps
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(a) Polarisation circulaire, régime de RPA (b) Polarisation linéaire, régime de TNSA

Ficure — Graphiques montrant les transferts d’énergie entre le laser et les différentes
espéces du plasma pour une longueur de cible de 10 microns pour un laser de | =
102W.cm™2. En bleu, I'énergie totale, en orange I'énergie du laser, en rouge I'énergie
cinétique des électrons, en violet celle des protons de la face avant, en vert celle des
protons de la face arriére et en rose |'énergie due au rayonnement des électrons

Carriére Thomas Séminaél 9 juillet 2021 /21



Propagation du faisceau laser et interaction avec la cible

Simulations 1D

Paramétres :
L] laser :
o A=1um 100}
o | =108BW.cm—2 sol
@ a9~ 190 S
| cible : - ¢
S
o ne = 30n, -50+
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FIGURE — Propagation de la composante E, du laser

5 en unité normalisée avant interaction en polarisation

vl + @ — 134 (1) circulaire avec profil en densité de la cible.
2
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Propagation du faisceau laser et interaction avec la cible

Simulations 1D

Paramétres :
[ laser : 60 75
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_ 1023 2 —
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Facteur de Lorentz : FIGURE — Propagation de la composante E, du laser

en unité normalisée aprés interaction en polarisation
circulaire avec profil en densité de la cible.

a2
y & 1+?°=134 (1)
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Spectres en énergie des protons accélérés

Longueur optimale dans le régime TNSA?3 :
£ = 0.5a02 <
n,

e

Spectre en énergie des protons aprés intéraction
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FIGURE — Spectre en énergie des protons mesuré a 50um de la cible pour la longueur
optimale de cible en TNSA (£ = 4.48um) en polarisation linéaire

3. A. V. BranTov et al. (2015). « lon energy scaling under optimum conditions of
laser plasma acceleration from solid density targets ». [n = Phys. Rev. 5T Accel. Beams

18 (2), p. 021301.
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Spectres en énergie des protons accélérés

Longueur optimale dans le régime TNSA?3 :
£ = 0.5a02 <
n,

e

Spectre en énergie des protons apres intéraction
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FIGURE — Spectre en énergie des protons mesuré a 50um de la cible pour la longueur
optimale de cible en TNSA (£ = 4.48uum) en polarisation circulaire

3. A. V. BranTov et al. (2015). « lon energy scaling under optimum conditions of
laser plasma acceleration from solid density targets ». [n = Phys. Rev. 5T Accel. Beams
18 (2), p. 021301.
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Spectres en énergie des protons accélérés

Spectre en énergie des protons aprés intéraction ~ SPectre en énergie des protons apres intéraction
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FIGURE — Spectres en énergie des protons mesurés & 50 um de la cible pour la longueur
de cible de 1 micron (a) et 2 microns (b) en polarisation circulaire pour un laser avec
I =10 W.cm™?
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Spectre en énergie pour | = 10?3 W.cm™2 pour une

polarization circulaire & 0.1 microns

Spectre en énergie des protons aprés intéraction
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Spectre en énergie pour | = 10?3 W.cm™2 pour une

polarization linéaire pour 10 microns

dN/dE normalisé

Spectre en énergie des protons aprés intéraction
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Spectre pour | = 10%?> W.cm~2 linéaire pour 10 microns

Spectre en énergie des protons aprés intéraction
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Energies en fonction du temps
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Réaction de Spallation

Internuclear
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FIGURE — Schéma de la réaction de spallation (FiLGEs et GoLpEnsAUM 2009)*

4. D. FiLces et F. GoLpensAuM (2009). Handbook of Spallation Research. John \Wiley
et Sons, Ltd.
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Résidus nucléaires lors de la spallation (+évaporation)
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Ficure — Résidus nucléaires issus de la spallation d'un proton de 1GeV avec du plomb
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Spectre en énergie des neutrons
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Spectre en energie des neutrons
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FIGURE — Spectres en énergie des neutrons a) Simulation effectuée pour des protons
incidents de 1GeV sur cible de Pb dans FLUKA b) Reésultats de CHEen et al. 2019°

5. S. N. CHEN et al. (2019). « Extreme brightness laser-based neutron pulses as a
pathway for investigating nucleosynthesis in the laboratory ». \n : Matter and Radiation
at Extremes 4.5, p. 054402.
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Capture neutronique

Dans nos simulations : 197Au =198 Ay

Nd
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Ficure — Chemin de capture neutronique pour différents éléments selon les processus s
6
our

6. A. FReBEL (2015). « Neutron-Capture processes and the heaviest elements ». In
Searching for the Oldest Stars : Ancient Relics from the Early Universe. Princeton
University Press, p. 107-129.
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Conclusions et Perspectives

Interaction laser-plasma

Production de neutrons par réaction de spallation

Capture neutronique et nucléosynthése
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Capture neutronique dans |'or

Capture neutronique dans I'Or
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FiGUurRE — Simulation de capture neutronique dans I'Or sur FLUKA, création de |'isotope
198 Ay 3 partir de I'isotope " Au avec en entrée des neutrons de 0.5 MeV
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Espace des phases et propagation du laser
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FIGURE — Interaction du laser de 1 micron a | = 102W.cm™2 avec la cible de 1 micron,
composantes du champ électrique (3 premiers graphes), profil en densité face avant puis
face arriére (2 graphes suivants), espace des phases des deux faces (2 derniers graphes)
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Espace des phases et propagation
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FIGURE — Réfléction du laser de 1 micron a | = 103W.cm™

du laser
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avec la cible de 1 micron,

composantes du champ électrique (3 premiers graphes), profil en densité face avant puis
face arriére (2 graphes suivants), espace des phases des deux faces (2 derniers graphes)
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Changement de la longueur d'onde du laser

On est a la limite de SIT a £ &~ X\ — shaping du pulse (M accH 2013) 2,
Localement, le pulse a du mal a se propager n. ~ 200n. ~ agn.

a. Andrea MaccH! (2013). A Superintense Laser-Plasma Interaction Theory
Primer.

On veut regarder la variation de la longueur d'onde aprés intéraction du
faisceau avec le flying mirror (MaccH 2013) 2 :

um <A™ < 7um

1_11-58
A A1+
Ar = 3.6um

a. Andrea MaccH! (2013). A Superintense Laser-Plasma Interaction Theory
Primer.
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