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Classification des corps finis 2/39

Théoreme. Le cardinal d'un corps fini est une puissance d’'un nombre premier.
Réciproquement, étant donné p"* une puissance d'un nombre premier, il existe un
unique corps, a isomorphisme preés, de cardinalité p".

Notation. I désigne le corps de décomposition de X P X sur [, et posséde
p" éléments.

Nous utiliserons principalement le corps [, a deux éléments (notés O et 1), dont
les tables d'addition et de multiplication sont les suivantes :

+ 0 1 - 0 1
0 0 1 0
1 1 0 1 0 1

-
-]




Groupe des inversibles d'un corps fini

Théoréme. L’ensemble des inversibles du corps IF,, noté IFqX, muni de la mul-
tiplication est un groupe cyclique; cela signifie qu'il existe o € IF,, tel que

() :={a"neZ} =T/

Remarque. Dans un corps, étre inversible = étre non nul.

Exemples : 5" = {1} = (1), F;' =(a) ot o € F;'\{1}, 5" = (B) ot p € F\{1},
= (v) ot v € IF; est tel que Y+~ +1=0ou y*+~°+1=0,
F7X:<3>,...



Vocabulaire 4739

Définition.

e Un alphabet A est un ensemble non-vide de symboles sans signification
individuelle. Dans la pratique, on exige que I'alphabet soit fini.

e Un code C de longueur n € N~ est un sous-ensemble non-vide de A" dont
les éléments sont appelés mots.

e le cardinal d'un code C C A" est appelé taille du code.

e SiA=T, ot q=7p", un sous-espace vectoriel de [F;" est appelé code linéaire
de longueur n.




Code barre : exemple avec EAN-13 5/39

EAN : European Article Number

Ce code permet notamment d'identifier les livres via leur ISBN (/International Stan-
dard Book Number).

EAN-13 est un code barre a 13 chiffres (décimaux).

Le dernier chiffre est un chiffre de contréle, et permet de s'assurer dans la pratique
que le code a été bien scanné. Un mot ajas...a13 appartient au code si et seulement
SI

a1+ 3as+ az+ 3as+ - - - + 3a12 + a13 =0 (mod 10)

(Exemple : ISBN 9 781441 998538)



Le code ASCII 6/30

ASCII : American Standard Code for Information Interchange

C'est une norme informatique permettant de coder 128(=27) caractéres, numé-
rotés de 0 a 127.

7 bits nécessaires pour représenter ces caractéres.
Ex: 0000110, 0101010
On ajoute généralement un huitiéme bit, appelé bit de parité.

Ex: 00001100, 01010101



Le code ASCII 7/30

A={0,1} =15, et C est un code linéaire, car c'est un IF>-sous-espace vectoriel de
IF$ de dimension 7.

Plus précisément, c'est le noyau de |'application linéaire

8
8
IFQ — IFQZ (ai)lgigg —— Z a;
1=1



Avantage du bit de parité 830

Le bit de parité donne de |'information redondante.

Supposons qu'Alice veuille envoyer le caractére ASCIl 10010101 a Bob.
Malheureusement, I'information est mal transmise et Bob recoit le mot 10011101.
Puisque la somme des bits (dans ) vaut 1, Bob peut détecter une erreur.

C'est un exemple de code détecteur d’erreurs.



Limites pratiques du bit de parité 0/39

Bob ne peut pas identifier la position du bit erroné.

Si lors de I'envoi, deux bits sont erronés (ex: 00011101), alors Bob ne détectera
aucune erreur et interprétera mal le message d’Alice.

Ex:
Alice envoie : Hey Boby!
Bob recoit : Hey Baby!



Autre exemple de code 10/39

Un autre exemple est le dénommé code de répétitions C={(a,a, ---,a)|ac A} C
A", pour A un alphabet.

Si A=K est un corps (fini), alors C est un code linéaire, car c'est un sous-espace
vectoriel de IK" de dimension 1. Le code C est le noyau de |'application linéaire

K" —— K" 1 (a;)1<i<n— (an — ai)1<i<n_1



Codes correcteurs d'erreurs 11/39

Prenons n =3 et A=1F; pour |'exemple.

No envoie le mot 000 € C a Bond, et Bond recoit 007. Bond détecte une erreur
car 007 ¢ C. De plus, en supposant qu’'au plus une erreur ait été commise, il peut
récupérer le message original. On dit que le code corrige 1 erreur.

C'est un premier exemple de code correcteur d'erreurs.

. . . n .
Pour n et A arbitraires, ce code C corrige {TJ erreurs, voyez-vous pourquoi ?



Autres codes 12/39

Code QR (Quick Response Code)/Code Aztec/Data Matrix/PDF417/...

Codes de Reed-Solomon (codage des CDs) (code sous-jacent aux codes QR)
Codes de Hamming

Codes BCH

Codes de Goppa (codes cycliques)

Codes de Golay

Codes de Hadamard

Codes LDPC



Distance de Hamming 13/39

Deéfinition. On définit une distance sur 'ensemble A", appelée distance de
Hamming, telle que pour x = (x;),y = (y;) € A"

d(l‘,y) ::#{ie{lv"'vn}’xi#yi}

Si A=T,, on définit le poids de x € I’ par w(x):=d(x,0py).

En d’autres termes, d(x, ) mesure le nombre de coordonnées distinctes entre z et
Y.

Exemple pour A=1TF; et C=TF; :

d(01,21)=1 et B[00,1]={00,01,02, 10,20}



Méthodes de décodage 14/39

Décodage par vraisemblance maximale

Soit un mot z € A" (regu). On définit son décodage par vraisemblance maximale
comme étant |'unique mot x € C (s'il existe) qui maximise la probabilité

P(zrecu |z envoyé)



Méthodes de décodage 15/39

Décodage par distance minimale

Soit un mot z € A" (recu). On définit son décodage par distance minimale comme
étant |'unique mot = € C (s'il existe) qui minimise

d(x, z)



Méthodes de décodage 16/39

Dans la plupart des cas, les deux stratégies de décodage présentées ici coincident.

Exercice.

Soient C C A" un code, z € A™ un mot recu, et =, y € C. Supposons que la probabilité qu'il
se produise une erreur de transmission a la coordonnée i d’'un mot soit p < 5 indépendamment
de 7, et que ces événements soient indépendants. Prouver que

d(x,z) <d(y, z) <= P(zrequ|xenvoyé) > P(zrequ | y envoyé)



Vocabulaire et lemme 17/39

Définition. Soit un code C C A".

e On appelle distance minimale du code le nombre
d(C):=min{d(z,y) |z, y€C.x#y}

e On dit que le code est de type (n,m,d),, ou simplement (n,m,d), s'il est
de longueur n, de taille m =|C|, de distance minimale d, avec |A|=q.

Lemme. SiC CIF' est un code linéaire, alors

d(C)=min {w(x)|x €C\{0}}




Lemmes de détection et correction d erreurs

Lemme. (de détection) Soit C un code de type (n,m.d). Pour tous x € C et
ye A", si 0<d(x,y)<d, alors y ¢ C. On dit que le code détecte d — 1 erreurs.

Lemme. (de correction) Soit C un code de type (n,m,d). Pour tout ye& A",
s'il existe un x € C tel que

d(x,y) < {%J

alors x est ['unique mot du code C a posséder cette propriété. On dit que le code

corrige LTJ erreurs.




Matrice génératrice et matrice de contréle

Définition. Soit C C I, un code linéaire de dimension F.

On dit que M € M(n x k,IF,) est une matrice génératrice du code C si ses
colonnes forment une base de C en tant que IF-espace vectoriel.

On dit que A€ M((n —k) xn,IF,) est une matrice de contréle du code C si

C=KerA




Proposition 20/39

Proposition. Soit C un code linéaire, et A€ M((n — k) x n,IE,) une matrice
de contréle de C.

La distance minimale d'un code linéaire C est la plus petite quantité de colonnes
nécessaires pour former un ensemble linéairement dépendant.

Exemple. Soit ¢=p”* > 3, et soit o € IF* un générateur du groupe cyclique IF,".
Alors le code linéaire dont une matrice de contréle est A a une distance minimale
valant 3 :
1 1 1 --- 1
A= 2 9

1 o « ot



Exemple plus sophistiqué : Codes de Reed-Solomon 2

Soient g =p" >3, et r € N”0 tels que » < ¢ — 2, et soit o un générateur de IFqX.

La matrice
( 11 1 -+ 1 .- 1 \
1 o @2 o e e Oér o e e &q—Q
\ ]_ Oér 04270 . e Oérz . e Oé”f‘((]—?) )

est une matrice de contrdle d'un code linéaire dont la distance minimale vaut » + 2.

Il s'agit d'un code de Reed-Solomon.



Exemple de code de Reed-Salomon 22/39

Prenons ¢ =7, r=3, et =3 €I (qui est un générateur de IF.*). Alors

A: —
1 32 3% 36 38 310 1 24124
\1333639312315) \161616)

est une matrice de contrdle d'un code de Reed-Solomon (un IFr-espace vectoriel)
dont la distance minimale vaut 5 ; celui-ci corrige donc 2 erreurs.



Exe rcice 23/39

Prouver que la distance minimale du code linéaire dont une matrice de contréle est
A vaut 4. Prouver également que la matrice M est une matrice génératrice du code.

(0111\

1011

(100001 11) 1101
01001011 1110
A=l oo101101 | M 1000
\00011110) 0100
0010

\0o001)



Un premier algorithme 24/39

Algorithme

Entrée : Un code linéaire C CIF;" du type (n, ¢",d) et un mot z c
Sortie : Correction de z par distance minimale

min:=n-+1
FOR weC DO
IF d(w, 2z) <min DO
Tri=w
min :=d(w, z)

RETURN z

La complexité de cet algorithme est en O(ng") (assez mauvais).



Syndrome 25/39

Définition. Pour v eI, le vecteur s(v):= Av € IE‘;‘_If est appelé syndrome
de v, ou A est une matrice de contrdle de C.

Remarque. L'application s: IF" — IF(?—]“ est linéaire, et Ker s =C.

Si z=x+e¢ (avec x €C), alors s(z) =s(e), donc le syndrome du message recu est
le syndrome des erreurs commises.



Code de Hamming 26/39

Exemple. Considérons le code de Hamming (de type (7,2%, 3)5), dont une matrice
de controle est

1010101
A= 0110011 |eMBxTE)
0001111

et supposons que nous ayons recu le mot z=0111010. Son syndrome vaut s(z) =

0

au plus une erreur a été commise, c'est le 3e bit qui est erroné, donc la correction
de z est 0101010.

1
Az( 1 ) . On en déduit que ce mot n'appartient pas au code de Hamming. Si



Exercices 27/39

Prouver que la matrice M suivante est une matrice génératrice du code de Ham-
ming (pour rappel, la matrice A est une matrice de contréle de ce code) :

(110 1)

1011

1010101 1000
A=l 0110011 | M=|l0111
0001111 0100
0010

\ 000 1)



Exercices "

On considére de nouveau le code C dont une matrice de controle est

. Corriger le message m = 10110011 (voir m comme un vec-

o~ OO
— o O O
_ == O

1
0
1
1

o OO =
o O~ O
—_ O = =

teur colonne) si

— O = =

on suppose qu'au plus une erreur ait été commise.

On a Am =1000, qui est exactement la le colonne de A ; autrement dit, |'erreur
se trouve en premiére position et le message original était 00110011. Qu'en est-il
si |'on suppose qu'au plus deux erreurs aient été commises ? Et pour trois erreurs ?

On recoit cette fois-ci le message m = 11001010. Est-il possible de le corriger ?



