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Classification des corps finis 2/39

Théorème. Le cardinal d'un corps fini est une puissance d'un nombre premier.
Réciproquement, étant donné pk une puissance d'un nombre premier, il existe un
unique corps, à isomorphisme près, de cardinalité pk.

Notation. Fpk désigne le corps de décomposition de X pk−X sur Fp, et possède
pk éléments.

Nous utiliserons principalement le corps F2 à deux éléments (notés 0 et 1), dont
les tables d'addition et de multiplication sont les suivantes :

+ 0 1 � 0 1

0 0 1 0 0 0
1 1 0 1 0 1



Groupe des inversibles d'un corps fini 3/39

Théorème. L'ensemble des inversibles du corps Fq, noté Fq
�, muni de la mul-

tiplication est un groupe cyclique ; cela signifie qu'il existe �2Fq tel que

h�i := f�njn2Zg=Fq
�

Remarque. Dans un corps, être inversible = être non nul.

Exemples : F2
�= f1g= h1i, F4�= h�i où �2F4�nf1g, F8�= h� i où � 2F8�nf1g,

F16
�= h
 i où 
 2F16

� est tel que 
4+ 
+1=0 ou 
4+ 
3+1=0,

F7
�= h3i,. . .



Vocabulaire 4/39

Définition.

� Un alphabet A est un ensemble non-vide de symboles sans signification
individuelle. Dans la pratique, on exige que l'alphabet soit fini.

� Un code C de longueur n2N>0 est un sous-ensemble non-vide de An dont
les éléments sont appelés mots.

� Le cardinal d'un code C �An est appelé taille du code.

� Si A=Fq, où q= pk, un sous-espace vectoriel de Fq
n est appelé code linéaire

de longueur n.



Code barre : exemple avec EAN-13 5/39

EAN : European Article Number

Ce code permet notamment d'identifier les livres via leur ISBN (International Stan-
dard Book Number).

EAN-13 est un code barre à 13 chiffres (décimaux).

Le dernier chiffre est un chiffre de contrôle, et permet de s'assurer dans la pratique
que le code a été bien scanné. Un mot a1a2:::a13 appartient au code si et seulement
si

a1+3a2+ a3+3a4+ � � �+3a12+ a13� 0 (mod 10)

(Exemple : ISBN 9 781441 998538)



Le code ASCII 6/39

ASCII : American Standard Code for Information Interchange

C'est une norme informatique permettant de coder 128(=27) caractères, numé-
rotés de 0 à 127.

7 bits nécessaires pour représenter ces caractères.

Ex: 0000110, 0101010

On ajoute généralement un huitième bit, appelé bit de parité.

Ex: 00001100, 01010101



Le code ASCII 7/39

A= f0; 1g=F2, et C est un code linéaire, car c'est un F2-sous-espace vectoriel de
F2
8 de dimension 7.

Plus précisément, c'est le noyau de l'application linéaire

F2
8−!F2: (ai)1�i�8 7−!

X
i=1

8

ai



Avantage du bit de parité 8/39

Le bit de parité donne de l'information redondante.

Supposons qu'Alice veuille envoyer le caractère ASCII 10010101 à Bob.

Malheureusement, l'information est mal transmise et Bob reçoit le mot 10011101.

Puisque la somme des bits (dans F2) vaut 1, Bob peut détecter une erreur.

C'est un exemple de code détecteur d'erreurs.



Limites pratiques du bit de parité 9/39

Bob ne peut pas identifier la position du bit erroné.

Si lors de l'envoi, deux bits sont erronés (ex: 00011101), alors Bob ne détectera
aucune erreur et interprétera mal le message d'Alice.

Ex:

Alice envoie : Hey Boby!

Bob reçoit : Hey Baby!



Autre exemple de code 10/39

Un autre exemple est le dénommé code de répétitions C=f(a; a; � � � ; a) ja2Ag�
An, pour A un alphabet.

Si A=K est un corps (fini), alors C est un code linéaire, car c'est un sous-espace
vectoriel de Kn de dimension 1. Le code C est le noyau de l'application linéaire

Kn−!Kn−1: (ai)1�i�n 7−! (an− ai)1�i�n−1



Codes correcteurs d'erreurs 11/39

Prenons n=3 et A=F11 pour l'exemple.

No envoie le mot 0002 C à Bond, et Bond reçoit 007. Bond détecte une erreur
car 0072/ C. De plus, en supposant qu'au plus une erreur ait été commise, il peut
récupérer le message original. On dit que le code corrige 1 erreur.

C'est un premier exemple de code correcteur d'erreurs.

Pour n et A arbitraires, ce code C corrige
j
n− 1
2

k
erreurs, voyez-vous pourquoi ?



Autres codes 12/39

Code QR (Quick Response Code)/Code Aztec/Data Matrix/PDF417/...

Codes de Reed-Solomon (codage des CDs) (code sous-jacent aux codes QR)

Codes de Hamming

Codes BCH

Codes de Goppa (codes cycliques)

Codes de Golay

Codes de Hadamard

Codes LDPC

...



Distance de Hamming 13/39

Définition. On définit une distance sur l'ensemble An, appelée distance de
Hamming, telle que pour x=(xi); y=(yi)2An

d(x; y) :=#fi2f1; � � � ; ngjxi=/ yig

Si A=Fq, on définit le poids de x2Fqn par w(x) := d(x; 0Fqn).

En d'autres termes, d(x; y) mesure le nombre de coordonnées distinctes entre x et
y.

Exemple pour A=F3 et C=F3
2 :

d(01; 21)=1 et B[00; 1]= f00; 01; 02; 10; 20g



Méthodes de décodage 14/39

Décodage par vraisemblance maximale

Soit un mot z 2An (reçu). On définit son décodage par vraisemblance maximale
comme étant l'unique mot x2C (s'il existe) qui maximise la probabilité

P (z reçu jx envoyé)



Méthodes de décodage 15/39

Décodage par distance minimale

Soit un mot z2An (reçu). On définit son décodage par distance minimale comme
étant l'unique mot x2C (s'il existe) qui minimise

d(x; z)



Méthodes de décodage 16/39

Dans la plupart des cas, les deux stratégies de décodage présentées ici coïncident.

Exercice.

Soient C �An un code, z 2An un mot reçu, et x; y 2 C. Supposons que la probabilité qu'il
se produise une erreur de transmission à la coordonnée i d'un mot soit p< 1

2
indépendamment

de i, et que ces évènements soient indépendants. Prouver que

d(x; z)<d(y; z)()P (z reçu jx envoyé)>P (z reçu j y envoyé)



Vocabulaire et lemme 17/39

Définition. Soit un code C �An.

� On appelle distance minimale du code le nombre

d(C) :=min fd(x; y) jx; y 2C ; x=/ yg

� On dit que le code est de type (n;m; d)q, ou simplement (n;m; d), s'il est
de longueur n, de taille m= jC j, de distance minimale d, avec jAj= q.

Lemme. Si C �Fq
n est un code linéaire, alors

d(C)=min fw(x)jx2Cnf0gg



Lemmes de détection et correction d'erreurs 18/39

Lemme. (de détection) Soit C un code de type (n;m; d). Pour tous x2C et
y 2An, si 0<d(x; y)<d, alors y2/ C. On dit que le code détecte d− 1 erreurs.

Lemme. (de correction) Soit C un code de type (n;m; d). Pour tout y 2An,
s'il existe un x2C tel que

d(x; y)�
�
d− 1
2

�

alors x est l'unique mot du code C à posséder cette propriété. On dit que le code

corrige
j
d− 1
2

k
erreurs.



Matrice génératrice et matrice de contrôle 19/39

Définition. Soit C �Fq
n un code linéaire de dimension k.

On dit que M 2M(n� k;Fq) est une matrice génératrice du code C si ses
colonnes forment une base de C en tant que Fq-espace vectoriel.

On dit que A2M((n− k)�n;Fq) est une matrice de contrôle du code C si

C=KerA



Proposition 20/39

Proposition. Soit C un code linéaire, et A2M((n− k)�n;Fq) une matrice
de contrôle de C.

La distance minimale d'un code linéaire C est la plus petite quantité de colonnes
nécessaires pour former un ensemble linéairement dépendant.

Exemple. Soit q= pk> 3, et soit �2Fq� un générateur du groupe cyclique Fq
�.

Alors le code linéaire dont une matrice de contrôle est A a une distance minimale
valant 3 :

A=

 
1 1 1 � � � 1

1 � �2 � � � �q−2

!



Exemple plus sophistiqué : Codes de Reed-Solomon 21/39

Soient q= pk> 3, et r 2N>0 tels que r < q − 2, et soit � un générateur de Fq
�.

La matrice

A=

0BBBBBBBBBBBB@
1 1 1 � � � 1 � � � 1

1 � �2 � � � �r � � � �q−2

1 �2 �4 � � � �2r � � � �2(q−2)

��� ��� ��� �� � ��� �� � ���
1 �r �2r � � � �r2 � � � �r(q−2)

1CCCCCCCCCCCCA
est une matrice de contrôle d'un code linéaire dont la distance minimale vaut r+2.

Il s'agit d'un code de Reed-Solomon.



Exemple de code de Reed-Salomon 22/39

Prenons q=7, r=3, et �=32F7� (qui est un générateur de F7
�). Alors

A=

0BBBBBB@
1 1 1 1 1 1

1 3 32 33 34 35

1 32 34 36 38 310

1 33 36 39 312 315

1CCCCCCA=
0BBBBBB@

1 1 1 1 1 1

1 3 2 6 4 5

1 2 4 1 2 4

1 6 1 6 1 6

1CCCCCCA
est une matrice de contrôle d'un code de Reed-Solomon (un F7-espace vectoriel)
dont la distance minimale vaut 5 ; celui-ci corrige donc 2 erreurs.



Exercice 23/39

Prouver que la distance minimale du code linéaire dont une matrice de contrôle est
A vaut 4. Prouver également que la matriceM est une matrice génératrice du code.

A=

0BBBBBB@
1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

1CCCCCCA M =

0BBBBBBBBBBBBBBBBBBBBBB@

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA



Un premier algorithme 24/39

Algorithme

Entrée : Un code linéaire C �Fq
n du type (n; qk; d) et un mot z 2Fqn

Sortie : Correction de z par distance minimale

min :=n+1
FOR w 2C DO

IF d(w; z)<minDO
x :=w
min := d(w; z)

RETURN x

La complexité de cet algorithme est en O(nqk) (assez mauvais).



Syndrome 25/39

Définition. Pour v 2Fqn, le vecteur s(v) :=Av 2Fqn−k est appelé syndrome
de v, où A est une matrice de contrôle de C.

Remarque. L'application s:Fq
n−!Fq

n−k est linéaire, et Ker s= C.

Si z=x+ e (avec x2C), alors s(z)= s(e), donc le syndrome du message reçu est
le syndrome des erreurs commises.



Code de Hamming 26/39

Exemple. Considérons le code de Hamming (de type (7;24;3)2), dont une matrice
de contrôle est

A=

0BB@ 1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

1CCA2M(3� 7;F2)

et supposons que nous ayons reçu le mot z= 0111010. Son syndrome vaut s(z)=

Az=

0BB@ 1
1
0

1CCA . On en déduit que ce mot n'appartient pas au code de Hamming. Si

au plus une erreur a été commise, c'est le 3e bit qui est erroné, donc la correction
de z est 0101010.



Exercices 27/39

Prouver que la matrice M suivante est une matrice génératrice du code de Ham-
ming (pour rappel, la matrice A est une matrice de contrôle de ce code) :

A=

0BB@ 1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

1CCA M =

0BBBBBBBBBBBBBBBBBB@

1 1 0 1

1 0 1 1

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCCCCCCCCCCCCCCA



Exercices 28/39

On considère de nouveau le code C dont une matrice de contrôle est0BBBBBB@
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

1CCCCCCA. Corriger le message m= 10110011 (voir m comme un vec-

teur colonne) si l'on suppose qu'au plus une erreur ait été commise.

On a Am= 1000, qui est exactement la 1e colonne de A ; autrement dit, l'erreur
se trouve en première position et le message original était 00110011. Qu'en est-il
si l'on suppose qu'au plus deux erreurs aient été commises ? Et pour trois erreurs ?

On reçoit cette fois-ci le message m= 11001010. Est-il possible de le corriger ?


