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1 Introduction

1.1 Discussion préliminaire

Tous les systèmes dynamiques ne satisfont pas aux hypothèses du théorème d'existence et d'unicité
de Cauchy ; il se peut que les équations lagrangiennes du mouvement les gouvernant ne peuvent s'écrire
sous la forme normale :

..
q
α

= Fα(qν ,
.
q
µ
) qqsoit α ∈ {1, ..., N} (1)

Les systèmes dont les équations du mouvement ne peuvent s'écrire sous la forme normale (1) sont
dits à invariance de jauge. ils jouent un rôle fondamental en physique. Leurs équations lagrangiennes
du mouvement ne sont plus toutes indépendantes et la transformation de Legendre menant au for-
malisme hamiltonien est telle que les variables canoniques sont restreintes par des contraintes. Dès
lors, les systèmes à invariance de jauge ont la propriété de présenter des fonctions arbitraires dans
l'expression de la solution générale des équations du mouvement. Les chapitres qui suivent donnent
une brève description des systèmes à invariance de jauge et donc présentant des contraintes dans leur
formulation hamiltonienne, le but étant de fournir une méthode de résolution des équations du mou-
vement ainsi que de discuter de diverses notions liées aux contraintes du système hamiltonien et aux
transformations de jauge. L'étude des systèmes à invariance de jauge est importantes car les théories
de l'électromagnétisme, de la gravitation, des intéractions fortes et faibles, des cordes,... présentent de
tels systèmes.

Ce papier est très fortement inspiré du chapitre 5 du livre de Philippe Spindel "MECANIQUE,
Volume 2, Mécanique Analytique" [1], de l'article de Xavier Beckaert et Jeong-Hyuck Park "Symmetries
and dynamics in constrained systems" [3] et quelque peu de "Quantization of Gauge Systems" de Marc
Henneaux et Claudio Teitelboim [2].

1.2 Exemple introductif

Commençons tout d'abord par l'étude rapide d'un lagrangien particulier, à savoir :

L =
1

2
(x− .

y)2 (2)

On voit que ce système est invariant sous la transformation

δy = f δx =
.
f

où f est une fonction du temps arbitraire. En appliquant les équations d'Euler-Lagrange, on trouve
une unique équation :

x =
.
y

Et donc la solution générale du système fait apparaître une fonction arbitraire F(t) :

y = F(t) x =
.

F(t)

Si l'on veut e�ectuer une étude hamiltonienne du système, il faut avant tout remarquer que le
moment px est nul, L ne dépendant pas de

.
x :

px =
∂L

∂
.
x

= 0

Par conséquent,
.
x ne peut être exprimé en fonction des variables (x, y, px, py). L'hamiltonien se

voit alors être di�cilement dé�nissable.

En outre, on réalise que la matrice cinétique 2× 2, W , est singulière,

W =
( ∂2L

∂
.
q
α
∂
.
q
β

)
=

(
0 0
0 1

)
⇒ det(W ) = 0
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Or le caractère non singulier de cette matrice est nécessaire pour passer du formalisme lagrangien
au formalisme hamiltonien sans anicroche.

Rien n'est pour autant perdu, mais il est clair qu'une étude de systèmes de la sorte est nécessaire.

2 Identités de Noether

2.1 dérivation des identités

Plaçons-nous dans l'espace des con�gurations de dimension N . On se rappelle que pour des trans-
formations in�nitésimales :

qα −→ qα + εaϕαa (q,
.
q, t) avec δqα = εaϕαa (3)

.
q
α −→ .

q
α

+
d

dt
εaϕαa (q,

.
q, t) avec δ

.
q
α

=
d

dt
εaϕαa (4)

où a varie de 1 àM, si le lagrangien reste invariant à une dérivée totale par rapport au temps près
d
dt

(
εaFa

)
, les équations du mouvement admettentM intégrales premières du mouvement :

Ka = ϕαa
∂L

∂
.
q
α − Fa(q,

.
q) (5)

Supposons maintenant que εa soit une fonction arbitraire, c'est-à-dire εa = εfa(t). Le calcul de la
variation de l'action S sur une trajectoire quelconque nous permet de trouver les identités suivantes :[ ∂L

∂qα
− d

dt

( ∂L
∂
.
q
α

)]
ϕαa ≡ 0 (6)

Les trajectoires étant quelconques, on trouve, après avoir développé la dérivée par rapport au temps,
que ∂2L

∂
.
q
α
∂
.
q
βϕ

α
a ≡ 0. Autrement dit, la matrice cinétqiue Wαβ = ∂2L

∂
.
q
α
∂
.
q
β admetM vecteurs propres avec

la valeur propre 0. Il en résulte que la matrice cinétique n'est pas inversible.

On retient alors qu'une symétrie sous transformation de jauge du système dynamique dans l'es-
pace des con�gurations, c'est-à-dire une transformation de symétrie présentant une fonction arbitraire
f(t), implique que la matrice cinétique est singulière. Par conséquent, les équations du mouvement
ne peuvent être sous la forme normale (1), et des fonctions arbitraires apparaitront dans la solution
générale des équations du mouvement.

Remarquons que des dérivées peuvent apparaitre dans la transformation in�nitésimale : en plus
d'avoir une fonction εfa(t) dans les transformations in�nitésimales, il est tout à fait possible de trouver,
dans ces transformations, certaines des dérivées de fa(t),

δqα = ε

P∑
k=0

dkfa(t)

dtk
ϕαak (7)

Dans ce cas, les identités de Noether sont

P∑
k=0

(−1)k
dk

dtk

{[ ∂L
∂qα
− d

dt

( ∂L
∂
.
q
α

)]
ϕαa,k

}
≡ 0 (8)
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Cela se déduit de :

δS =

∫ [ δL
δqα

δqα +
d

dt

( ∂L
∂qα

δqα
)]
dt (9)

= ε

∫
δL

δqα

P∑
k=0

dkfa(t)

dtk
ϕαakdt + ε

( ∂L
∂qα

δqα
)∣∣∣tf
ti

(10)

= ε

∫ {[ δL
δqα

ϕαa1 −
d

dt

( δL
δqα

ϕαa2

)]
fa +

δL

δqα

P∑
k=2

dkfa(t)

dtk
ϕαak

}
dt (11)

+ ε
( ∂L
∂qα

δqα
)∣∣∣tf
ti

+ ε
( δL
δqα

ϕαa,2f
a
)∣∣∣tf
ti

(12)

= ...... (13)

= ε

∫
fa

P∑
k=0

(−1)k
dk

dtk

{[ ∂L
∂qα
− d

dt

( ∂L
∂
.
q
α

)]
ϕαa,k

}
dt+ termes aux bords (14)

En développant les dérivées par rapport au temps, on voit que, au �nal, il n'y a qu'un seul terme
comprenant le coe�cient dP+2qβ/dtP+2ϕαa,N . Par conséquent, on retrouve une égalité analogue à ce
qui a déjà été établi :

∂2L

∂
.
q
β
∂
.
q
α
ϕαa,P ≡ 0 (15)

2.2 Exemple

Reprenons le lagrangien de l'exemple introductif et considérons les transformations :

δx = ε
.
f(t) = ε(ϕx0f(t) + ϕx1

.
f(t)) (16)

δy = εf(t) = ε(ϕy0f(t) + ϕy1
.
f(t)) (17)

(18)

Autrement dit, ε(t) = εf(t) pour la variation de y et la dérivée de f apparaît dans la variation de x.

On a donc que
ϕx0 = ϕy1 = 0 et ϕx1 = ϕy0 = 1 (19)

On trouve bien que la variation de L est une dérivée par rapport au temps (d'une constante) :

δL = (x− .
y)(δx− δ .y) (20)

= (x− .
y)ε(

.
f(t)−

.
f(t)) (21)

= 0 (22)

L'identité de Noether est alors ici

− d

dt

∂L

∂
.
y
ϕy0 +

d

dt

[
(−1)

∂L

∂x
ϕx1

]
≡ 0 (23)

On peut en e�et calculer explicitement, sachant que ∂L
∂x = x− .

y et ∂L
∂
.
y

=
.
y − x,

− d

dt

∂L

∂
.
y
ϕy0 −

d

dt

(∂L
∂x

ϕx1
)

= −..y +
.
x− .

x+
..
y = 0 (24)

Finalement on trouve l'égalité suivante qui fournit un vecteur propre à valeur propre nulle de la
matrice cinétique :

(W )αβ(ϕ1)
β = 0 (25)

en accord avec

(
0 0
0 1

)(
1
0

)
=

(
0
0

)
(26)
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3 Transformation de Legendre singulière

Les variables pα sont telles que :

pα =
∂L

∂
.
q
α ≡ Pα(q,

.
q, t) (27)

Etant donné le caractère singulier de la matrice cinétiqueW , il ne sera pas toujours possible d'écrire
que

.
q
α

= Qα(q, p, t) via (27) ; l'image par la transformation de Legendre de l'espace des con�gurations
sera une sous-variété V et seules 2N−M variables de vitesses pourront s'exprimer comme des fonctions
des q et des p. En outre, de (27) seront issuesM relations dé�nissant la sous variété V de l'espace des
phases :

φ(1)m (q, p, t) = 0 (28)

Ces relations sont appelées contraintes primaires (on suppose leur gradient bien dé�ni et non nul).

En remplaçant, dans (28), les variables p par leur expression (27), et en dérivant par rapport aux
variables de positions et vitesses, on trouve que lesM vecteurs de composantes

∂φ
(1)
m

∂pβ

∣∣∣
p=p(q,

.
q,t)

(29)

sont les vecteurs propres à valeur propre nulle de W . Aussi, la contre-image d'un point P̃ de V par
la transformation de Legendre est un sous-espace de dimension M de l'espace des con�gurations. Si

(q̃, ˙̃q) appartiennent à la contre-image de P̃ , il en est de même pour le point (q̃, ˙̃q + um∂φ
(1)
m

∂pβ
) :

Pα(q̃, ˙̃qβ + um
∂φ

(1)
m

∂pβ

∣∣∣
p=p(q,

.
q)

) = Pα(q̃, ˙̃q) (30)

En général, une fonction F (q, q̇, t) est une fonction sur V si et seulement si elle est constante sur
les contre-images de chaque point de V :

F (q̃, ˜̇qβ + um
∂φ

(1)
m

∂pβ

∣∣∣
p=p(q,q̇)

, t) = F (q̃, ˜̇q, t) (31)

En développant F (q̃, ˜̇qβ + um∂φ
(1)
m

∂pβ

∣∣
p
, t) à l'ordre un, on voit que cela signi�e que F doit véri�er les

relations :
∂F

∂q̇β
∂φm
∂pβ

∣∣∣
p=P (q,q̇)

= 0 (32)

En particulier, la fonction d'énergie :

W (q,
.
q, t) = Pα

.
q
α − L(q,

.
q, t) (33)

véri�e (31). On a, compte tenu des contraintes :

W (q,
.
q, t) = h[q,P(q,

.
q, t), t] (34)

sur la variété V.

C'est à partir de cette relation (34) que l'on dé�nit ce qu'on appelle l'hamiltonien canonique : il
s'agit de l'ensemble des fonctions de l'espace des phases qui coïncident avec h(q, p, t) sur V. En notation
de Dirac, on introduit le symbole ≈ appelé égalité faible qui indique que l'égalité se fait modulo les
conditions imposées par V. Et donc un hamiltonien canonique est une fonction faiblement égale à
h(q, p, t).

Hc(q, p, t) ≈ h(q, p, t) (35)

Le choix deHc(q, p, t) est très arbitraire. SiHc(q, p, t) véri�e bien la condition (35), alors on pourrait
tout à fait choisir comme hamiltonien canonique la fonction ˜Hc(q, p, t) dé�nie par :

˜Hc(q, p, t) = Hc(q, p, t) + Cm(q, p, t)φ(1)m (q, p, t) (36)

où les Ca(q, p, t) sont des fonctions arbitraires des variables canoniques q et p.
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4 Complément sur les contraintes primaires

Ici, nous analysons de façon plus approfondie la notion de contrainte primaires et nous donnons
une autre dé�nition de l'hamiltonien canonique, dé�nition équivalente à celle ci-dessus.

4.1 Contraintes primaires et surface des contraintes

Reprenons la relation (27) dé�nissant les N moments ; on a pα = fα(q,
.
q, t). Le but est désormais

d'essayer d'inverser ces relations a�n d'exprimer les vélocités
.
q
α
en fonctions des q, des p et éventuel-

lement du temps.

Si certains des moments, notés pa, dépendent non-trivialement de certaines vitesses, notées
.
q
â
, alors

ces
.
q
â
en question peuvent être exprimées en termes de pa et d'autres vélocités

.
q
m̂
, ainsi que des qα et

du temps :
.
q
â

= hâ(qα, pa,
.
q
m̂
, t) (37)

Les autres moments qui ne sont pas des pa sont notés pm, ils sont fonctions de (qα, pa,
.
q
m̂
, t) et ne

pourront pas permettre aux
.
q
m̂

d'être exprimés en fonctions des moments. Une fois que l'on a trouvé
tous les

.
q
â
pouvant s'écrire comme (37), et donc distingué tous les

.
q
m̂
, on obtient :

.
q
â

= hâ(qα, pa,
.
q
m̂
, t) ; pm = fm(qα, pa, t) (38)

Les a et m, ainsi que les â et m̂ forment des ensembles distincts : {a} ∩ {m} = ∅ = {â} ∩ {m̂}
(et aussi, {a} ∪ {m} = {α} = {â} ∪ {m̂} ). Remarquons que pa n'est pas nécessairement la variable

conjuqué de
.
q
â
, mais il y a tout de même une relation 1-1 {a} ←→ {â}. Les .

q
m̂

sont des variables

indépendantes, de même que les pa. A l'inverse, les pm et
.
q
â
ne sont pas indépendantes : ils s'expriment

comme (38).

Si le système est soumis àM contraintes primaires, alors on compte dans l'espace des phasesM
relations indépendantes :

φm(p, q, t) = pm − fm(qα, pa, t) (39)

Ces contraintes primaires dé�nissent la surface des contraintes primaires V de dimensions 2N−M :

V = {(p, q)| φm(p, q, t) = 0 , 1 6 m 6M} (40)

Etant donné l'indépendance de ces relations, lesM vecteurs à N coordonées :

−→
∂pφm

∣∣∣
V

=
(∂φm
∂p1

,
∂φm
∂p2

, ....,
∂φm
∂pN

)∣∣∣
V

(41)

Sont linéairement indépendants.

Sur la surface des contraintes primaires, tout point peut être repéré par 2N −M variables indé-
pendantes xi. Ainsi, les points (p, q) de V correspondent à une fonction f des variables xi et du temps
si les contraintes dépendent explicitement du temps :

V = {(p, q) = f(x, t)} (42)

En outre, les contraintes indépendantes peuvent être vues comme des variables indépendantes φm
de sorte que tout point de l'espace des phases peut être repéré par les coordonnées (xi, φm) et pour
une fonction arbitraire de l'espace des phases F (q, p, t), on peut dé�nirM fonctions Fm(p, q, t) telles
que :

F (p, q, t) := F̃ (x, φ, t) = F̃ (x, 0, t) + φmF
m(p, q, t) = F̃ (p, q, t)

∣∣∣
V

+ φmF
m(p, q, t) (43)

7



4.2 Contraintes à partir des équations d'Euler-Lagrange

Nous allons travailler ici avec les variables indépendantes (qâ, qm̂, pa,
.
q
m̂

). Les équations d'Euler-
Lagrange du mouvement sont alors équivalentes à :

dpa
dt

=
∂L(q,

.
q, t)

∂qa

∣∣∣ .
q
â
=hâ(qα,pa,

.
q
m̂
,t)

(44)

dfm(qα, pa, t)

dt
=
∂L(q,

.
q, t)

∂qm

∣∣∣ .
q
â
=hâ(qα,pa,

.
q
m̂
,t)

(45)

Avec
dqâ

dt
= hâ(qα, pa,

.
q
m̂
, t) ;

dqm̂

dt
=

.
q
m̂

(46)

Ce qui nous conduit, en substituant (44) et (46) dans (45), à :

hâ
∂fm
∂qâ

+
.
q
m̂∂fm
∂qm̂

+
∂fm
∂pa

∂L(q,
.
q, t)

∂qm

∣∣∣ .
q
â
=hâ

+
∂fm
∂t

=
∂L(q,

.
q, t)

∂qm

∣∣∣ .
q
â
=hâ

(47)

m appartenant à {1, ...,M}. Ces M relations en (47) constituent M contraintes pour les va-

riables
.
q
m̂
; certains

.
q
m̂

deviennent des fonctions des autres variables indépendantes ou bien des para-
mètres totalement indépendants. Une fois les

.
q
m̂
déterminés, l'évolution dans le temps des coordonnées

(qâ, qm̂, pa) est donné par les équations (44) et (46). Toutefois, il arrive que les contraintes (47) soient

non linéaires en les
.
q
m̂

et donc di�ciles à résoudre. On peut alors utiliser les 2N variables indépen-
dantes (qα, pa,

.
q
m

) (et non les
.
q
m̂
), où les

.
q
m

sont telles que les contraintes (47) sont linéaires en les
.
q
m
.

4.3 Hamiltonien canonique

Une autre façon de dé�nir l'hamiltonien canonique, tout à fait équivalente à (35), est de prendre

la dé�nition d'hamiltonien H =
.
q
α
pα − L tout en prenant en compte que

.
q
â

= hâ(qα, pa,
.
q
m̂
, t) et en

considérant les variables indépendantes (qâ, qm̂, pa,
.
q
m̂

).

Hc(qα, pa, t) :=
.
q
α
pα − L(q,

.
q, t) (48)

= hâ(qα, pa,
.
q
m̂
, t)pâ +

.
q
m̂
pm̂ − L(qα, hâ(qα, pa,

.
q
m̂
, t),

.
q
m̂

) (49)

=
.
q
a
pa +

.
q
m
fm(qα, pa, t)− L(qα, hâ(qα, pa,

.
q
m̂
, t),

.
q
m̂

) (50)

A une combinaison linéaire des contraintes primaires près.

On montre (heureusement) que Hc n'est pas fonction des vélocités
.
q
m̂
en calculant ∂Hc

∂
.
q
m̂ qui est une

quantité nulle.

5 Equations hamiltoniennes du mouvement

5.1 A partir d'un hamiltonien canonique

Soit un hamiltonien canonique Hc(q, p, t) avec p exprimé comme en (27) (on a alors la fonction
énergie). Si on évalue la di�érentielle de W (q,

.
q, t) = Hc(q, p(q, q̇, t), t), on trouve que :

q̇α =
∂Hc
∂pα

+ um
∂φ

(1)
m

∂pα
(51)

ṗα = −∂Hc
∂qα

− um∂φ
(1)
m

∂qα
(52)

φ(1)m (q, p, t) = 0 (53)

Ces équations peuvent se réécrire sous forme d'égalités faibles :

q̇α ≈ {qα,Hc + umφ(1)m } (54)

ṗα ≈ {pα,Hc + umφ(1)m } (55)
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5.2 Des équations d'Euler-Lagrange

Il est possible de retrouver les équations du mouvement à partir du lagrangien L(q, q̇, t) et en
prenant comme variables indépendantes (qα, pa, q̇

m̂, t). A partir de l'hamiltonien canonique (50), on
trouve directement, en réalisant les dérivées partielles et avec q̇â = hâ(qα, pa, q̇

m̂, t) :

∂Hc(q, pb, t)
∂pa

= q̇a − q̇m∂φm
∂pa

(56)

∂Hc(q, pb, t)
∂pn

= q̇n − q̇m∂φm
∂pn

= 0 (57)

∂Hc(q, pb, t)
∂qα

= −∂L(q, q̇, t)

∂qα

∣∣∣
q̇â=hâ

− q̇m∂φm
∂qα

(58)

On voit ainsi que les multiplicateurs um des équations de la section ci-dessus correspondent aux
vélocités q̇m indépendantes. On peut exprimer les vélocités et moments en termes de (qα, pa, q̇

m, t) :

q̇α(q, pa,q̇
m, t) =

∂Hc(q, pb, t)
∂pα

+ q̇m
∂φm
∂pα

(59)

dpa
dt

= −∂Hc(q, pb, t)
∂qa

+ q̇m
∂fm
∂qa

(60)

dfm
dt

= −∂Hc(q, pb, t)
∂qm

+ q̇n
∂fn
∂qm

(61)

5.3 Hamiltonien total et équivalence entre formalisme hamiltonien et lagrangien

Il est très utile d'introduire ce que l'on appelle l'hamiltonien total dé�ni par :

HT (qα, pβ, u
m, t) := Hc(qα, pa, t) + φm(qα, pβ, t)u

m (62)

Cet hamiltonien est introduit pour décrire la dynamique hamiltonienne de façon plus compacte :

∂HT
∂pα

∣∣∣
V

= q̇α ;
∂HT
∂qα

∣∣∣
V

= −∂L(q, q̇, t)

∂qα
(63)

La dérivée totale d'une fonction F (p, q, t) sur la surface des contraintes primaires est donc, sous
forme de crochets de Poisson :

dF

dt
≈ {F,HT }+

∂F

∂t
+ cmφm ≈ {F,HT }+

∂F

∂t
on− shell (64)

En outre, sur la surface des contraintes primaires V également, l'hamiltonien total est égal à l'ha-
miltonien canonique :

HT ≈ Hc ;
∂HT
∂um

≈ 0 (65)

A partir d'un hamiltonien total, on peut montrer qu'il y a équivalence entre les formalismes hamil-
tonien et lagrangien.

Partons d'un hamiltonien Hc(p, q, t) dans l'espace des phases à 2N dimensions. Donnons-nousM
contraintes arbitraires φm indépendantes ; cela nous permet d'introduireM variables um indépendantes
et aussi de dire queM moments dans l'espace des phases sont données par pm = fm(qα, pb, t).

L'hamiltonien total est dé�ni comme en (62). Le principe d'action est tiré de l'action :

S[qα, pβ, u
l, t] =

∫
dt
(
pαq

α −HT
)

(66)

Ce qui mène aux équations d'évolution des variables de positions :

q̇α(q, pa, u
l, t) ≡ ∂HT

∂pα

∣∣∣
V

(67)
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Si on suppose qu'il est possible d'exprimer les variables de l'espace des phases en fonction des
positions et vitesses

pa = pa(q, q̇, t) ; pm = fm(q, pa(q, q̇, t), t) ; um = um(q, q̇, t) (68)

Alors, on peut dé�nir le lagrangien :

L(q, q̇, t) :=
(
q̇αpα −Hc(p, q, t)

)∣∣∣
V

=
(
q̇αpα −HT (p, q, u, t)

)∣∣∣
V

(69)

La dynamique lagrangienne est ainsi obtenue :

∂L(q, q̇, t)

∂q̇α
=
(
pα + q̇β

∂pβ
∂q̇α
−
∂pβ
∂q̇α

∂HT
∂pβ

)∣∣∣
V

= pα(q, q̇, t) (70)

∂L(q, q̇, t)

∂qα
=
(∂pβ
∂qα

q̇β − ∂HT
∂pβ

∂pβ
∂qα
− ∂HT

∂qα

)∣∣∣
V

= −∂HT (p, q, u, t)

∂qα

)∣∣∣
V

(71)

pm = fm(q, pa(q, q̇, t), t) (72)

Cela montre l'équivalence entre le formalisme hamiltonien et le formalisme lagrangien, avec pour
hypothèse le fait qu'il est possible d'écrire (68) (le terme adéquat est : on suppose l'existence d'une
carte inverse (qα, q̇β)→ (qα, pb, u

m)).

6 Cohérence des équations

6.1 Contraintes secondaires

Les contraintes primaires (28) devant être préservées au cours de l'évolution du système, les vecteurs
dé�nis par les équations du mouvement doivent être partout tangents à la surface V et à chaque instant.
La préservation des contraintes primaires se traduit par :

.
φ
(1)

m ≈ 0 ou {φ(1)m ,HT }+ ∂tφ
(1)
m ≈ 0 (73)

Il se peut alors que de nouvelles contraintes apparaissent. On les appelle contraintes secondaires. Ces
dernières devant être également préservées, il se peut qu'elles fournissent des contraintes tertiaires, elles-
mêmes pouvant donner des contraintes quaternaires, et ainsi de suite. Toutes ces nouvelles contraintes

(il y en a K) sont notées φ(2)m′ où m′ ∈ {M+ 1, ...,M+K}. Le mouvement a donc �nalement lieu sur
une surface des contraintes S de dimension 2N −M−K.

6.2 développement de l'hamiltonien total et hamiltonien de première classe

Nous notons :
φ̃A(q, p) = 0 A ∈ {1, ...,M+K} (74)

l'ensemble de toutes les contraintes. Elles véri�ent par dé�nition le système deM+K équations

{φ̃A,Hc}+ um{φ̃A, φ(1)m }+ ∂tφ̃A ≈ 0 (75)

àM inconnues um.

La solution générale de ce système est :

um = um(q, p, t) + λi(t)Um(i)(q, p, t) (76)

Où um est une solution particulière de l'équation (75), les λi sont des fonctions arbitraires du temps
et les Um(i)(q, p) sont des solutions de l'équation homogène, donc elles véri�ent :

Um(i){φ̃A, φ
(1)
m } ≈ 0 i ∈ {1, ..., r ≤M} (77)
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L'indice i ne parcourt qu'une partie des contraintes primaires, à savoir les contraintes primaires ET
de première classe. La dé�nition de première classe sera spéci�ée par la suite.

A partir d'un hamiltonien canonique Hc choisi et d'une solution particulière um(q, p, t), on peut
construire l'hamiltonien total :

HT = Hc + umφ(1)m + λiUm(i)φ
(1)
m (78)

qui dépend de r fonctions arbitraires λi(t).

On dé�nit également les r fonctions

γ
(1)
(i) = Umi φ

(1)
m (79)

Et on introduit le symbole ” � ” qui traduit une égalité faible sur la surface de toutes les contraintes
S. L'égalité G � R est ainsi une égalité modulo les contraintes primaires et secondaires. On peut parler,
pour faire la di�érence avec l'égalité faible, d'égalité ” très ” faible entre G et R. Les fonctions (79)
sont telles que :

{φ̃A, γ(1)i } � 0 (80)

Ces fonctions sont dites de première classe. Par dé�nition, une fonction de première classe est une
fonction dont le crochet de Poisson avec toutes les contraintes est "très" faiblement nul. Les fonctions
qui ne véri�ent pas cette propriétés sont dites de deuxième classe.

Ainsi, l'hamiltonien total correspond à la somme d'un hamiltonien de première classe

HP = Hc + umφ(1)m (81)

et d'une combinaison arbitraire de r contraintes primaires de première classe.

Il est à noter que le crochet de Poisson de deux fonctions de première classe reste une fonction
de première classe (cela se prouve en utilisant l'identité de Jacobi) et, si HP ainsi que toutes les
contraintes de premières classe ne dépendent pas explicitement du temps, alors le crochet de Poisson
de la dérivée d'une contrainte de première classe avec une contrainte de première classe reste une
fonction de première classe. Aussi, on peut montrer que la restriction sur S et la dérivée sont deux
opérations qui commutent :

d

dt

(
F (p, q, t)

∣∣
S

)
=
( d
dt
F (p, q, t)

)∣∣∣
S

(82)

Dès lors que les contraintes secondaires, tertiaires,... sont toutes bien dé�nies, on peut généraliser
l'hamiltonien total en additionnant à (62) des termes quadratiques en les contraintes.

HT = Hc + umφ(1)m +
1

2
φhφh′w

hh′ = HP + λiγ
(1)
i +

1

2
φhφh′w

hh′ (83)

Où h, h′ parcourent toutes les contraintes ; 1 ≤ h, h′ ≤M+K. Cette "nouvelle" dé�nition de l'ha-
miltonien total ne modi�e en rien les équations du mouvements, le mouvement ayant lieu désormais
sur S, là où toutes les contraintes s'annulent.

De par le fait que :

{φh,HP } � {φh,HT } � φ̇h
∣∣∣
S
− ∂φh

∂t
� −∂φh

∂t
(84)

On comprend que HP et HT sont tous les deux de première classe si les contraintes ne dépendent
pas explicitement du temps.
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7 Transformations de jauge

7.1 Transformations in�nitésimales

On rappelle les équations du mouvement (63) sous forme de crochets de Poisson :

.
q
α ≈ {qα,HT } ≈ {qα,HP }+ λi(t){qα, γ(1)i } (85)

ṗα ≈ {pα,HT } ≈ {pα,HP }+ λi(t){pα, γ(1)i } (86)

On note que r fonction arbitraires λi apparaissent dans l'expression de HT . Les solutions des équa-
tions du mouvement correspondant à deux choix di�érents de ces fonctions arbitraires doivent être
identi�és.

Les fonctions λi sont dites fonctions de jauge et un choix particulier de la fonction constitue une
�xation de la jauge. Dès lors, les transformations résultant des choix di�érents des fonctions λi sont
dites transformations de jauge du système dynamique. Une transformation de jauge correspond donc
à une transformation du système lorqu'on passe de la jauge λi à une autre λi + δλi.

Considérons un système représenté, au temps t0, par le point de coordonnées (qα(t0), p
α(t0)). A

l'instant t0 + ε, où ε est in�nitésimal, le système est représenté, dans la jauge λi∗ par le point de
coordonnées :

qα∗ (t0 + ε) = qα(t0) + ε({qα,HP }+ λi∗{qα, γ
(1)
(i) })

∣∣
q(t0),p(t0)

(87)

pα∗ (t0 + ε) = pα(t0) + ε({pα,HP }+ λi∗{pα, γ
(1)
(i) })

∣∣
q(t0),p(t0)

(88)

Dans la jauge voisine λi∗̃ = λi∗ + δλi, on aurait :

qα∗̃ (t0 + ε) = qα(t0) + ε({qα,HP }+ (λi∗ + δλi){qα, γ(1)(i) })
∣∣
q(t0),p(t0)

(89)

= qα∗ (t0 + ε) + εδλi{qα, γ(1)(i) }
∣∣
q(t0),p(t0)

(90)

pα∗̃ (t0 + ε) = pα∗ (t0 + ε) + εδλi{pα, γ(1)(i) }
∣∣
q(t0),p(t0)

(91)

Lors d'une transformation de jauge, on a donc que la transformation canonique in�nitésimale est

générée par la fonction δλiγ
(1)
(i)

δjaugeq
α = εδλi{qα, γ(1)(i) } (92)

δjaugep
α = εδλi{pα, γ(1)(i) } (93)

De façon générale, tous les points de l'espace des phases pouvant être transformés l'un dans l'autre
par des transformations canoniques engendrées par des contraintes primaires de première classe sont
physiquement équivalents. On dit qu'ils sont équivalents de jauge. Etant donné que deux choix de
jauge di�érents permettent tout de même de décrire la même physique, la présence des fonctions
arbitraires dans l'hamiltonien total induit que l'espace des phases contient des degrés de liberté non
physiques. En e�et deux choix di�érents de fonctions arbitraires, λi1 et λi2, forment deux hamiltoniens
totaux distincts et donc conduisent à deux évolutions di�érentes d'une variable Z au cours du temps.

δZ = {Z, γ(1)i }(λi2 − λi1)δt. Il n'empêche que ces deux jauges, bien que distinctes, décrivent la même
physique ; il y a symétrie de jauge.

7.2 Générateurs de symétrie de jauge

Les crochets de Poisson des contraintes primaires de première classe avec l'hamiltonien de première
classe possèdent la particularité d'être générateurs de transformation de jauge.
Pour montrer cela, considérons d'abord l'évolution dans le temps d'une variable Z pendant un temps
δt1 décrite par l'hamiltonien total HT , c'est-à-dire sans �xer la jauge. Par après, l'évolution temporelle
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est dictée par l'hamiltonien de première classe HP , c'est-à-dire en �xant complètement la jauge, et a
lieu pendant un temps δt2. La variable Z évolue ainsi de la sorte :

Z(t0 + δt1 + δt2) = Z0 + {Z0 + {Z,HT }δt1,HP }δt2 (94)

= δt2δt1

(
{{Z,HP },HP }+ {{Z, γ(1)i }λ

i,HP }
)

(95)

Considérons ensuite les mêmes opérations d'évolution dans le temps de cette variable mais dans
l'ordre inverse : d'abord Z évolue avec HP pendant un temps δt2, puis avec HT pendant un temps δt1.

Z̃(t0 + δt1 + δt2) = Z0 + {Z0 + {Z,HP }δt2,HT }δt1 (96)

= δt2δt1

(
{{Z,HP },HP }+ {{Z,HP }, γ(1)i }λ

i
)

(97)

Les deux hamiltoniens décrivant la même évolution des états physiques mais dans des jauges dif-
férentes, les variables Z et Z̃ à l'instant t0 + δt1 + δt2 sont équivalentes de jauge. D'où la di�érence
entre Z et Z̃ est une transformation de jauge. Par usage de l'identité de Jacobi, l'évaluation de la
di�érence des variables Z et Z̃ montre que le crochet des contraintes primaires de premières classe avec
l'hamiltonien de première classe est un générateur de transformations de symétrie de jauge.

(Z̃ − Z)(t0 + δt1 + δt2) = δt1δt2

[
{{Z,HP }, γ(1)i }λ

i − {{Z, γ(1)i }λ
i,HP }

]
(98)

= δt1δt2λ
i
[
− {γ(1)i , {Z,HP }}+ {HP , {Z, γ(1)i }}

]
(99)

≡ δt1δt2λi{Z, {HP , γ(1)i }} (100)

On peut également montrer que les crochets de Poisson impliquant les contraintes primaires de
première classe et une autre contrainte de première classe ou l'hamiltonien HP sont des générateurs
de symétrie de jauge via l'introduction d'opérateurs formés à partir des transformations de jauge
in�nitésimales. On déduit de (93) la transformation de jauge �nie fournie par

T [εi(t)] = e
εiγ̂

(1)
(i) (101)

opérateur généré par εiγ
(1)
(i) .

1

Les contraintes de première classe γ
(1)
(i) constituent des générateurs in�nitésimaux de transformations

de jauge, et ils ne sont pas les seuls générateurs de telles transformations. De fait, ils dé�nissent
une algèbre qui nous mène à considérer que d'autres contraintes peuvent former des générateurs de
transformations de jauge. On en déduit que le crochet de Poisson de deux contraintes primaires de
première classe constitue un générateur in�nitésimal de transformations de jauge. On peut montrer
cela en considérant la suite de transformations

T [−εi]T [−ηi]T [εi]T [ηi] = T (102)

que l'on applique à une coordonnée quelconque Z lorsque ηi et εi sont in�nitésimaux :

T (Z) = T [−εi]T [−ηi]T [εi]
(
Z + ηi{Z, γ(1)i }+

1

2
ηiηj{{Z, γ(1)i }, γ

(1)
j }

)
(103)

= T [−εi]T [−ηi]
(
Z + (εi + ηi){Z, γ(1)i }+

1

2
(ηiηj + 2εjηi + εjεi){{Z, γ(1)i }, γ

(1)
j }

)
(104)

= .... (105)

= Z + εjηi
(
{{Z, γ(1)i }, γ

(1)
j } − {{Z, γ

(1)
j }, γ

(1)
i }

)
(106)

= Z + εjηi{Z, {γ(1)(j) , γ
(1)
(i) }} (107)

Les générateurs {γ(1)(i) ,HP } font souvent apparaître des contraintes secondaires de première classe
comme générateurs de transformations de jauge.

1. Soit Z une coordonnées quelconque, l'opérateur γ̂
(1)

(i) agit sur Z de la sorte : γ̂
(1)

(i) (Z) = {Z, γ(1)

(i) }
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On peut alors penser qu'une contrainte de première classe, quelqu'elle soit, est génératrice de
transformations symétrie de jauge. La conjecture de Dirac postule d'ailleurs que toutes les D contraintes
de première classe, notées γI , sont des générateurs de transformations de jauge. Cela n'est en fait pas
toujours vrai, mais il se trouve que les systèmes physiquement intéressants véri�ent cette conjecture.
Dans ce cas (dans le cas où la conjecture est véri�ée), l'évolution du système calculée à partir de
l'hamiltonien total HT est équivalente à celle calculée à partir de ce qu'on appelle l'hamiltonien étendu

HE :
HE = HP + λIγI = HT + λs(t)γ(2)s I = 1, ...,D (108)

s parcourant toutes les contraintes secondaires de première classe.

7.3 Exemples : systèmes contredisant la conjecture de Dirac

• Voici un système qui ne véri�e pas la conjecture de Dirac :

L = (
.
x
.
z +

1

2
yz2) (109)

On peut montrer que les contraintes secondaires de première classe ne sont pas des générateurs de

transformations de jauge ; seule la contrainte primaire de première classe (il s'agit de φ
(1)
1 = py)

est un tel générateur, et on a ainsi que la variable conjuguée à py, càd y, suit une évolution arbi-
traire. Dès lors, les solutions du mouvement sont di�érentes si on emploie l'hamiltonien étendu
plutôt que l'hamiltonien total : ces deux hamiltoniens ne sont pas équivalents.

• Un autre hamiltonien qui ne véri�e pas la conjecture de Dirac est le suivant :

Hc(q, µ, ν, λ, p, πµ, πν , πλ) = eλq2 + e−µp2 + π2ν + qπν (110)

où p est la variable conjuguée à q, et πi est la variable conjuguée à i.

Les contraintes primaires sont :

φ1 = πλ ≈ 0 (111)

φ2 = πµ ≈ 0 (112)

Et donc
HT = eλq2 + e−µp2 + π2ν + qπν + u1πλ + u2πµ (113)

De ces contraintes primaires, on trouve les contraintes secondaires :

{πλ,HT } = q2eλ ⇒ φ3 = q ≈ 0 (114)

{πµ,HT } = e−µp2 ⇒ φ4 = p ≈ 0 (115)

Ces nouvelles contraintes fournissent elles-mêmes une contrainte tertiaire :

{q,HT } = 2pe−µ ⇒ p ≈ 0 (rien de neuf) (116)

{p,HT } = 2qeλ + πν ⇒ φ5 = πν ≈ 0 (117)

Comme {πν ,HT } = 0, il n'y a pas de contraintes d'ordre supérieur à 3.

On a que φ1, φ2 et φ5 sont des contraintes de première classe tandis que φ3 et φ4 sont de seconde
classe et ne sont donc pas des générateurs de transformations de jauge.

Aussi, φ1 et φ2 sont des générateurs de transformations de jauge, mais leur crochet de Poisson
avec l'hamiltonien de première classe HP = eλq2 + e−µp2 + π2ν + qπν + u1πλ + u2πµ ne permet
pas de dire que φ5 en est un :

{πλ,HP } = 0 (118)

{πµ,HP } = e−µp2 (119)
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Ici, φ5 n'est pas un générateur de transformations de jauge bien que cette contrainte soit de
première classe. Plus tard, nous verrons les critères exactes que doit avoir une quantité Q pour
être générateur de symétrie. La conjecture de Dirac n'est pas véri�ée dans ce cas et la solution
générale du système obtenue avec l'hamiltonien étendu HE = HP + λ1φ1 + λ2φ2 + λ5φ5 fournit
davantage de fonctions arbitraires que la solution obtenue via l'hamiltonien total. De fait, dans les
équations du mouvement obtenu via HE , on aurait l'équation supplémentaire

.
ν = −2πν − q−λ5

rendant ν(t) arbitraire.

8 Contraintes de seconde classe

8.1 Crochet de Dirac

Supposons que nous ayons trouvé toutes lesM+K contraintes φ̃A du système. Parmi elles, on en
compte M qui sont de première classe, on les note γI , et P qui sont de seconde classe, on les note χu.
LesM contraintes de première classe s'obtiennent à partir desM solutions ŨA(I) du système d'équations
linéaires homogènes :

UA{φ̃A, φ̃B} � 0 (120)

De ces solutions, on forme
γI = ŨA(I)φ̃A (121)

Cette décomposition n'est pas unique et il est possible de redé�nir les contraintes :

γI → AJI γJ + SuvI χuχv det(A) 6= 0 (122)

χu → Bv
uχu +RJuγI det(B) 6= 0 (123)

Les contraintes de première classe restent de première classe et celles de seconde classe restent de
seconde classe en e�ectuant cette redé�nition.

Un objet fondamental à l'étude de la variété des contraintes de seconde classe est la matrice P ×P
C antisymétrique de composantes

Cuv = {χu, χv} (124)

Cette matrice est inversible, sinon il existerait une nouvelle contrainte dans le système (or on
suppose qu'on a trouvé toutes les contraintes). Une conséquence des propriétés d'inversibilité et d'an-
tisymétrie est que le nombre de contraintes de seconde classe doit être pair.En e�et, :

det(C) = det(Ct) = (−1)Pdet(C) (125)

Etant donné que det(C) 6= 0 (car inversibilité), il est nécessaire que (−1)P = 1, autrement dit, P
est pair.

Soit Σ̃ la surface engendrée par les contraintes χu. Cette surface est de dimension 2s = 2N − P .

Les 2s coordonnées sur Σ̃ seront notées xa et les équations qui dé�nissent la surface Σ̃ s'écrivent
paramétriquement comme :

zA = SA(xa) zA = (qα, pβ) (126)

Elles véri�ent :
χu[SA(xa)] ≡ 0 (127)

Les conditions de régularités étant supposées satisfaites, un vecteur de composantes X̃A est tangent
à la surface si :

X̃A ∂χu
∂zA

≈ 0 (128)

En dérivant par rapport à xa (127), on trouve que les composantes de ces vecteurs tangents sont :

X̃A =
∂SA

∂xa
Xa (129)
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En se rappelant la 2-forme symplectique w

wAB =

(
0 δA,B−N

−δA−N,B 0

)
(130)

et en restreignant l'action de cette 2-forme aux vecteurs tangents à Σ̃, on peut construire la 2-forme
induite σ :

σab =
∂SA

∂xa
∂SB

∂xb
wAB (131)

Ces relatons (131) dé�nissant σ sont équivalentes à

XaXbσab = X̃AX̃BwAB (132)

Cette 2-forme σ permet de dé�nir le crochet de Poisson induit {, }∗ de deux fonctions f et g dé�nies
sur Σ̃ :

{f, g}∗ =
∂f

∂xa
∂g

∂xb
σab (133)

La 2-forme σ a été construite à partir du crochet de Poisson sur l'espace des phases et des équations
qui dé�nissent Σ̃. Soit alors F et G deux fonctions qui se restreignent à f et g respectivement sur la
surface Σ̃, il est possible de directement calculer la valeur du crochet (133) à partir de la donnée de
représentants des fonctions F et G au voisinage de Σ̃ :

{f, g}∗ =
∂F

∂zA
∂G

∂zB
∂SA

∂xa
∂SB

∂xb
σab (134)

On dé�nit alors le tenseur antisymétrique

∆AB =
∂SA

∂xa
∂SB

∂xb
σab (135)

qu'on exprime en coordonnées zA.

Ce tenseur véri�e les relations suivantes :

∆ABwBC
∂SC

∂xc
=
∂SA

∂xc
(136)

∆AB ∂χu
∂zB

= 0 (137)

La première relation nous permettant d'établir :

∆AB = wAB + PAv
∂χv
∂zC

wCB (138)

ce qui, au moyen de la deuxième relation de (137), nous mène à :

wAB
∂χu
∂zB

= −PAv{χv, χu} = −PAvCvu (139)

Et donc :

∆AB = wAB − wAD ∂χu
∂zD

(C−1)uv
∂χv
∂zC

wCB (140)

Cela nous permet d'introduire sur l'espace des phases un nouveau crochet : le crochet de Dirac

{, }D :

{F,G}D =
∂F

∂zA
∂G

∂zB
∆AB (141)

= {F,G} − {F, χu}(C−1)uv{χv, G} (142)

Ce crochet véri�e bien toutes les propriétés qu'on attend d'un crochet : antisymétrie, bilinéarité,
véri�e la règle de Leibniz, l'identité de Jacobi,...

Le crochet de Dirac possède des propriétes intéressantes :
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1. Si F est de première classe et G quelconque :

{F,G}D � {F,G} (143)

2. Le crochet s'annule sur les contraintes de seconde classe :

{F, χu}D ' 0 (144)

' signi�ant � égal sur la surface des contraintes de seconde classe de dimension 2N − P �

Si l'on utilise le crochet de Dirac plutôt que le crochet de Poisson, on peut, en chaque point z̃A

remplacer les contraintes de seconde classe χu(zA) par la valeur χu(z̃A). Ainsi, sur Σ̃, on peut les poser
égales à zéro avant d'entamer le calcul des crochets de Dirac.

8.2 Exemple

Considérons à nouveau l'hamiltonien (110). La surface des contraintes secondaires est dé�nie par
les deux contraintes

φ3 = q ≈ 0 φ4 = p ≈ 0 (145)

La matrice C correspondant à ces contraintes est :

C =

(
0 1
−1 0

)
= −C−1 (146)

L'espace des phases étant de huit dimensions (composé des variables q, µ, ν, λ, p, πµ, πν , πλ), la sur-
face engendrée par les contraintes est, elle, de six dimensions et les coordonnées de Σ̃ sont µ, ν, λ, πµ, πν , πλ.
On a les relations pour SA(xa) :

S1 = 0 ; S2 = µ ; S3 = ν ; S4 = λ ; S5 = 0 ; S6 = πµ ; S7 = πν ; S8 = πλ (147)

On construit la 2-forme σ via la relation (131) :

σab = δAa δ
B
b w

AB ⇒ σ =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

 (148)

Il en résulte le crochet de Poisson induit (133) :

{f, g}∗ =
∂f

∂µ

∂g

∂πµ
+
∂f

∂ν

∂g

∂πν
+
∂f

∂λ

∂g

∂πλ
− ∂g

∂µ

∂f

∂πµ
− ∂g

∂ν

∂f

∂πν
− ∂g

∂λ

∂f

∂πλ
(149)

Ayant trouvé σ, on peut déterminer le tenseur ∆ (135) :

∆AB = δAa δ
B
b σ

ab ⇒ ∆ =



0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0


(150)

Le crochet de Dirac est ainsi dé�ni :

{F,G}D =
∂F

∂µ

∂G

∂πµ
+
∂F

∂ν

∂G

∂πν
+
∂F

∂λ

∂G

∂πλ
− ∂G

∂µ

∂F

∂πµ
− ∂G

∂ν

∂F

∂πν
− ∂G

∂λ

∂F

∂πλ
(151)

Et comme (C−1)12 = −(C−1)21 = −1, la relation (142) est véri�ée.
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9 Transformation de jauge de l'action

9.1 Règles de transformations a�n de rendre l'action étendue invariante et déter-

miner les transformations de symétrie de jauge

En considérant une variation par rapport à toutes les variables qα, pα, λ
I , up (1 ≤ p ≤ P ) de l'action

étendue, on peut obtenir les équations du mouvement de la mécanique diracienne.

L'action étendue est

SE =

∫
(pα

.
q
α −HP − λIγI − upχp)dt (152)

Imposons à cette action d'être invariante, modulo des termes de bords, lors d'une transformation
de jauge in�nitésimale engendrée par εIγI . Les contraintes de première classe γI sont supposées ne
dépendre que des qα et des pα tandis que les fonctions εI peuvent dépendre du temps, des qα et des pα
(mais pas de leur dérivée) et des multiplicateurs λI et up ainsi que de leurs dérivées nième par rapport
au temps.

A une dérivée totale par rapport au temps près, on doit avoir :

δλIγI + δupχp = δ(pα
.
q
α
)− δHP − λIδγI − upδχp (153)

Avec

δjauge(pα
.
q
α
) = {pα, εIγI}

.
q
α

+ pα
d

dt
{qα, εIγI} (154)

=
d

dt

(∂(εIγI)

∂pα
pα − εIγI

)
+
DεI

∂t
γI (155)

où
D

∂t
=

∂

∂t
+

.
λ
I ∂

∂λI
+

..
λ
I ∂

∂
.
λ
I

+ ...+
.
u
p ∂

∂up
+

..
u
p ∂

∂
.
u
p (156)

Les autres variations in�nitésimales de jauge s'écrivent de façon générale (voir (123)) :

δHP = {HP , εIγI} = εJ(V B
J γB + V mn

J χmχn) + {HP , εJ}γJ (157)

δγI = {γI , εIγI} = εJ(CKIJγK + CmnIJ χmχn + {εJ , γI}γJ (158)

δχp = {χp, εIγI} = εJ(DB
pJγB + EmnpJ χm) + {εJ , χp}γJ (159)

En substituant dans (153), on déduit les règles de transformations des multiplicateurs assurant
l'invariance de l'action étendue :

δλI =
DεI

∂t
+ {εI ,HE + upχp} − εJ(V I

J + λKCIKJ + umDI
mJ) (160)

δup = −εJ(V mp
J χm + λKCmpKJχm + umEpmJ) (161)

L'action totale s'obtient en �xant à zéro certaines des fonctions arbitraires de jauge de façon à ne
sommer que sur les contraintes primaires. Cela ne restreint pas la dynamique car on demande que les
contraintes primaires restent véri�ées au cours du temps, cela faisant apparaître les contraintes (secon-
daires) pour lesquelles on n'a plus de multiplicateurs. Pour obtenir les transformations de jauge laissant
la dynamique invariante, il faut, avec les équations précédentes, restreindre les fonctions arbitraires de
sorte qu'on préserve les conditions imposées aux fonctions de jauge, c'est-à-dire δλA = δum = 0 lorsque
les indices A et m ne correspondent pas à une contrainte primaire.

9.2 Exemple

Reprenons le lagrangien de l'exemple introductif

L =
1

2
(x− .

y)2 (162)
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On rappelle la solution générale du mouvement, obtenue d'abord grâce aux équations d'Euler-
Lagrange :

x(t) =
.

F(t) y(t) = F(t) (163)

Passons au formalisme hamiltonien et regardons en premier lieu la transformation de Legendre :

px =
∂L

∂
.
x

= 0 et py =
∂L

∂
.
y

=
.
y − x (164)

Cela nous permet de déduire la contrainte primaire φ1 = px et de construire l'hamiltonien canonique
ainsi que l'hamiltonien total :

Hc =
1

2
p2y + pyx HT =

1

2
p2y + pyx+ λxpx (165)

De l'hamiltonien total, on déduit une contrainte secondaire :

{px,HT } = py ⇒ φ2 = py � 0 (166)

HT ne dépendant pas de y, il n'y a pas d'autre contrainte. Les deux contraintes du système sont
de première classe.

Les équations hamiltoniennes du mouvement sont :
.
x = λx � λx ;

.
y = py + x � x (167)

.
px = −py � 0 ;

.
py = 0 � 0 (168)

On retrouve comme solutions des relations en accord avec (163) :

x(t) =
.
F(t) ; y(t) = F(t) ; λx =

..
F(t) ; px = 0 ; py = 0 (169)

L'hamiltonien étendu s'obtient en considérant toutes les contraintes :

HE =
1

2
p2y + pyx+ λxpx + λypy (170)

Les équations qu'il fournit sont :
.
x = λx ;

.
y = py + x+ λy (171)

.
px = −py ;

.
py = 0 (172)

px = 0 ; py = 0 (173)

dont les solutions font apparaître une seconde fonction arbitraire G(t) :

y = F(t) ; λy = G(t) ; x =
.
F(t)− G(t) ; λx =

..
F(t)−

.
G(t) ; px = 0 ; py = 0 (174)

La transformation de jauge la plus générale s'écrit :

G = εxpx + εypy (175)

εx et εy étant des fonctions arbitraires de toutes les variables et de leurs dérivées sauf celles de
x, y, px, py. Les transformations de jauge sont :

δx = {x,G} =
∂εx

∂px
px + εx +

∂εy

∂px
py (176)

δy =
∂εx

∂py
px + εy +

∂εy

∂py
py (177)

δpx = −∂ε
x

∂x
px −

∂εy

∂x
py (178)

δpy = −∂ε
x

∂y
px −

∂εy

∂y
py (179)

δλx =
Dεx

∂t
+
∂εx

∂x
λx +

∂εx

∂y
(py + x+ λy)− ∂εx

∂px
py (180)

δλy =
Dεy

∂t
+
∂εy

∂x
λx +

∂εy

∂y
(py + x+ λy)− ∂εy

∂px
py − εx (181)
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Si l'on veut obtenir les formules analogues dans le cadre du formalisme lagrangien, il faut poser :

λy = 0 ; δλy = 0 ; px = 0 ; py =
.
y − x ; λx =

.
x (182)

La fonction εy devient alors εy(t, x, y, px, py, λ
i,

.

λi,
..

λi...) = εy(t, x, y, px, py(
.
y, x), λx(

.
x),

.
λx(

..
x), ...) =

Ey(t, x, y,
.
x,

..
x, ...,

.
y). La fonction εx devient, elle, Ex déterminé par (181) et par le fait que δλy = 0 :

Ex =
Dεy

∂t
+
∂εy

∂x
λx +

∂εy

∂y
(py + x+ λy)− ∂εy

∂px
py

∣∣∣
mod(182)

(183)

On a ce qu'il faut pour trouver les transformations in�nitésimales de jauge des variables x et y
dans le formalisme lagrangien :

δx =
dEy

dt
− (

..
y − .

x)
∂εy

∂py

∣∣∣
mod(182)

(184)

δy = Ey + (
.
y − x)

∂εy

∂py

∣∣∣
mod(182)

(185)

Le premier terme de chacune de ces deux transformations correspond bien à la transformation déjà

obtenue δx =
.
f = δ

.
y, tandis que les seconds termes sont proportionnels aux équations du mouvement ;

ce sont des transformations de jauge triviales et on peut les ignorer. Les secondes termes apportent
d'ailleurs une variation du lagrangien qui est une dérivée par rapport au temps :

δL =
d

dt

[
− ∂εy

∂py

∣∣∣
mod(182)

(x− .
y)2
]

(186)

10 Charges de Noether

10.1 Symétries dans le formalisme lagrangien

Rappelons que, dans le formalisme lagrangien, une symétrie correspond à un changement de va-
riables qα → q

′α qui laisse le lagrangien invariant à une dérivée totale par rapport au temps près :

L(q′, q̇′, t) = L(q, q̇, t) +
dK

dt
(187)

la dérivée d'Euler-Lagrange étant covariante sous changement de variables, si δL(q,q̇,t)
δqα ≡ 0, alors

δL(q′,q̇′,t)
δq′α ≡ 0.

A une transformation de symétrie in�nitésimale qα → qα + δqα(q, q̇, t), on dé�nit δK(q, q̇, t) la
quantité telle que δL = dδK

dt à laquelle correspond la charge de Noether, ou intégrale première du
mouvement, voire constante du mouvement :

Q(q, q̇, t) = δqα(q, q̇, t)pα(q, q̇, t)− δK(q, q̇, t) (188)

A une symétrie globale :

• sous translation des positions correspond la conservation du moment pα (et qα est une variable
cyclique).

• sous translation dans le temps correspond la conservation de l'énergie de Noether (et le temps
est une variable cyclique).

• sous rotation correspond la conservation du moments angulaire.

La suite de cette section consiste à déterminer les charges de Noether dans un système dont la
description hamiltonienne présente des contraintes.
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10.2 Charges et contraintes

Tout le long de cette sous-section, nous allons travailler avec les variables indépendantes (q, pa, q̇
m̂, t)

et les quantités fonctions de ces variables seront surmontées d'un chapeau.

p̂α :=
∂L(q, q̇, t)

∂q̇α

∣∣∣
q̇â=hâ(q,pa,q̇m̂,t)

⇒ p̂a = pa ; p̂m = fm(qα, pa, t) (189)

δ̂q
α
(qβ, pa, q̇

m̂, t) := δqα(qν , hâ(q, pa, q̇
m̂, t), q̇m̂, t) (190)

δ̂K(q, pa, q̇
m̂, t) := δK(qν , hâ(q, pa, q̇

m̂, t), q̇m̂, t) (191)

Une relation utile dans l'espace des con�gurations est la suivante :

δ
(∂L(q, q̇, t)

∂q̇α

)
=
∂δK

∂qα
− ∂δqβ

∂qα
∂L

∂q̇β
+
∂δqβ

∂q̇α

[ d
dt

( ∂L
∂q̇β

)
− ∂L

∂qβ

]
(192)

Cette dernière permet de dé�nir la variation du moment p̂α et de passer de la première à la deuxième
ligne dans le calcul ci-dessous ;

δ̂pα(q, pa, q̇
m̂, t) :=

[
δ
(∂L(q, q̇, t)

∂q̇α

)
+
∂δqβ

∂q̇α
δL

δqβ

]∣∣∣
q̇â=hâ(q,pa,q̇m̂,t)

(193)

=
[∂δK
∂qα

− ∂δqβ

∂qα
∂L

q̇β

]∣∣∣
q̇â=hâ(q,pa,q̇m̂,t)

(194)

Cette dé�nition de la variation de p̂α est judicieusement choisie du fait qu'elle n'est pas fonction

des accélérations. La variation du "moment" ∂L(q,q̇,t)
∂q̇α

∣∣∣
q̇â=hâ

est décrite comme en (192) si ce n'est que

le terme contenant des accélérations doit disparaître. c'est pourquoi on soustrait à δ
(
∂L(q,q̇,t)
∂q̇α

)∣∣∣
q̇â=hâ

le terme ∂δqβ

∂q̇α

[
d
dt

(
∂L
∂q̇β

)
− ∂L

∂qβ

]∣∣∣
q̇â=hâ

.

La charge de Noether est, ici :

Q̂(qα, pa, t) = δ̂q
α
p̂α − δ̂K (195)

Cette quantité n'est e�ectivement pas fonction des q̇m̂. Cela peut se montrer en utilisant l'égalité

∂δK

∂q̇α

∣∣∣
q̇â=hâ

= p̂β
∂δqβ

∂q̇α

∣∣∣
q̇â=hâ

(196)

qui nous permet de dire que la dérivée partielle de Q̂ par rapport à q̇m̂ est nulle.

On trouve également les égalités suivantes :

∂Q̂

∂pa
= δ̂q

a
+ δ̂q

m∂fm
∂pa

(197)

∂Q̂

∂qα
= −δ̂pα + δ̂q

m∂fm
∂qα

(198)

On remarque que la fonction fm apparaît dans ces deux relations. Or, on voudrait que la charge de
Noether puisse générer les transformations de symétrie δ̂q

a
et δ̂pα, et fm ne s'annule pas sur la surface

des contraintes. Pour pouvoir corriger le problème, on introduit la charge de Noether totale qui est
fonction de (pα, q

β, q̇m, t).
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10.3 Charges de Noether totales

10.3.1 Avec des variables de moments, positions et vitesses

Les variables indépendantes sont désormais (pa, q
β, q̇m, t).Toute fonction qui sera dépendante de

ces variables sera surmontée d'un tilde.

q̇α = ṽα(qβ, pa, q̇
m, t) (199)

p̃α :=
∂L(q, q̇, t

∂q̇α

∣∣∣
q̇α=ṽα(qβ ,pa,q̇m,t)

= p̂α ⇒ p̃a = pa p̃m = fm(q, pa, t) (200)

˜δK(qβ, pa, q̇
m, t) := δK(q, ṽ, t) = δ̂K(q, pa, ṽ

m̂, t) (201)

δ̃q
α
(qβ, pa, q̇

m, t) := δqα(q, ṽ, t) = δ̂q
α
(q, pa, ṽ

m̂, t) (202)

δ̃pα(qβ, pa, q̇
m, t) := δ̂pα(q, pa, ṽ

m̂, t) (203)

La charge de Noether totale est dé�nie par :

Q̃T (p, q, q̇m, t) = δ̃q
α
pα − ˜δK(qβ, pa, q̇

m, t) (204)

= Q̂(q, pa, t) + δqn(q, pa, q̇
m, t)(pn − fn(q, pa, t)) (205)

Les moments pm n'ont pas été substitués par les fonctions fm car les δ̃q
α
sont multipliés par les

moments pα et non p̃α. L'apparition des fm est dûe au fait que Q̂ est exprimé en fonction des variables
(q, pa, t).

Les dérivées partielles de Q̃T ont une expression intéressante :

{Q̃T , qα} = −δ̃qα − {qα, δ̃qm}(pm − fm(pa, q, t)) (206)

{Q̃T , pα} = −δ̃pα − {pα, δ̃q
m}(pm − fm(pa, q, t)) (207)

Elles se simpli�ent sur la surface des contraintes primaires V :

{Q̃T , qα} = −∂Q̃T
∂pα

≈ −δ̃qα ; {Q̃T , pα} =
∂Q̃T
∂qα

≈ −δ̃pα (208)

Ces relations (208) peuvent s'interpréter de la sorte : les charges de Noether totales génèrent les
transformations de symétrie in�nitésimales sur V et sur la surface du mouvement.

Nous allons montrer que la surface des contraintes primaires est préservée sous transformations de
symétrie in�nitésimales sur la surface du mouvement. Autrement dit, on va montrer que {Q̃T , φm(q, pa, t)} ≡
0 2. On a en e�et que, en s'aidant de la relation (194) :

{Q̃T , φm(q, pa, t)} ≈ −δ̃pm +
∂fm
∂qα

δ̃q
α

+
∂fm
∂pa

δ̃pa (209)

≈ −
[
δ
( ∂L
∂q̇m

)
+
∂δqβ

∂q̇m
δL

δqβ

]
+
∂fm
∂qα

δ̃q
α

+
∂fm
∂pa

[
δ
( ∂L
∂q̇a

)
+
∂δqβ

∂q̇a
δL

δqβ

]
(210)

Or nous avons l'égalité suivante :

δfm(q, pa, t) =
∂fm
∂qα

δ̃q
α

+
∂fm
∂pa

δ
( ∂L
∂q̇α

)
(211)

Et comme ∂L(q,q̇,t
∂q̇m = fm(q, q̇, t), on obtient �nalement :

{Q̃T , φm(q, pa, t)} ≈ −δfm + δfm +
δL

δqβ
(
− ∂δqβ

∂q̇m
+
∂δqβ

∂q̇a
∂fm
∂pa

)
≡ 0 (212)

2. La variation d'une fonction F sous transformation est, vu (208), ∂F
∂qα

δqα + ∂F
∂pα

δpα ≈ {Q̃T , F}
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10.3.2 Dans l'espace des phases

Jusqu'ici, les charges de Noether ne sont pas pleinement dé�nies dans l'espace des phases, ne sont
pas pleinement exprimées avec les variables de positions et moments. Toutefois, on sait que l'on peut
résoudre les contraintes et déterminer les um(p, q, t), c'est-à-dire que les vitesses q̇m sont complètement
déterminées dans l'espace des phases avec, on le rappelle, des fonctions arbitraires λi(t). En substituant
les q̇m par la solution um(p, q, t) (76) dans les transformations in�nitésimales (202)-(203), ces dernières
deviennent des fonctions de (q, p).

∆qα(p, q, t) := δ̃q
α
(q, pa, q̇

m(p, q, t), t) (213)

∆pα(p, q, t) := δ̃pα(q, pa, q̇
m(p, q, t), t) (214)

QT (p, q, t) := Q̃T (q, pa, q̇
m(p, q, t), t) = ∆qαpα − ˜δK(q, pa, q̇

m(p, q, t), t) (215)

Les crochets de QT avec les variables de l'espace des phases sont :

{QT , qα} = −∆qα − {qα,∆qm}(pm − fm(pa, q, t)) (216)

{QT , pα} = −∆pα − {pα,∆qm}(pm − fm(pa, q, t)) (217)

L'hamiltonien totale étant HT := ṽαpα − L(q, ṽ, t), on a, sur la surface des contraintes primaires
V :

{QT ,HT } ≈ {QT , ṽα}pα − ṽα∆pα + ∆qα
∂L

∂qα
− {QT , ṽα}

∂L

∂ṽα
(218)

Toutefois, comme pα − ∂L(q,ṽ,t)

∂ṽα
correspond à la somme sur a de pa − ∂L(q,ṽ,t)

∂ṽa
, quantité nulle, et à

la somme sur m de pm − ∂L(q,ṽ,t)

∂ ˜vm
qui s'annule sur la surface des contraintes, on obtient �nalement :

{QT ,HT } ≈ −ṽα∆pα + ∆qα
∂L

∂qα
(219)

≈ −ṽα
(∂δK(q, ṽ, t)

∂qα
− ∂L(q, ṽ, t)

∂ṽβ
∂δqβ(q, ṽ, t)

∂qα

)
+ ∆qα

∂L(q, ṽ, t)

∂qα
(220)

≈ ∂δK

∂t
− ∂L

∂ṽα
∂δqα

∂t
(221)

≈ ∂δK

∂t
− ∂δqα

∂t
pα (222)

Cette égalité faible montre alors que :

{QT ,HT }+
∂QT
∂t
≈ 0 (223)

Cela signi�e que, en plus d'être nulle sur la surface du mouvement, la dérivée totale de la charge
QT est également nulle sur la surface des contraintes. On peut ainsi dire que {QT ,HT }+ ∂QT

∂t est une
combinaison linéaire des contraintes primaires. En d'autres termes, la charge de Noether totale génère
une transformation qui préserve l'hamiltonien sur la surface des contraintes.

∆HT =
∂HT
∂qα

∆qα +
∂HT
∂pα

∆pα (224)

≈ ∂HT
∂qα

∂QT
∂pα

− ∂HT
∂pα

∂QT
∂qα

(225)

≈ {QT ,HT } (226)

≈ −∂QT
∂t

(227)

QT préserve aussi les contraintes primaires sur la surface du mouvement. Utilisons le symbôle ∼=
signi�ant que l'égalité se fait sur la trajectoire naturelle tout en rappelant qu'elle s'e�ectue également
modulo les conditions dé�nissant la surface des contraintes primaires.

{QT , φm(q, pa, t)} ∼= 0 (228)
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Etant donné que la dérivée totale par rapport au temps dans l'espace des phases correspond à
"l'opérateur" {,HT } + ∂

∂t sur la surface du mouvement, l'évolution dans le temps de (228) est nulle
sur la surface du mouvement :

d

dt
{QT , φm(q, pa, t)} ≡ {{QT , φm(q, pa, t)},HT }+

∂

∂t
{QT , φm(q, pa, t)} ∼= 0 (229)

Les contraintes secondaires peuvent apparaître dans cette relation. Ces dernières sont dévoilées
lorsque l'on calcule {φm,HT } + ∂φm

∂t , terme que l'on peut faire apparaître dans (229) en utilisant
l'identité de Jacobi et la règle de Leibniz :

{QT , {φm,HT }+
∂φm
∂t
} = −{HT , {QT , φm}} − {φm, {QT ,HT }}+ {QT , ∂tφm} (230)

= {{QT , φm},HT }+ ∂t{QT , φm}+ {φm, {QT ,HT }+ ∂tQT } (231)

Donc, la relation (229) devient :

d

dt
{QT , φm(q, pa, t)} ≡ {QT , {φm,HT }+ ∂tφm} − {φm, {QT ,HT }+ ∂tQT } (232)

d

dt
{QT , φm(q, pa, t)} ∼= 0 (233)

Dès lors, si {QT ,HT }+∂tQT est une contrainte de première classe, alors on conclut que, non seule-
ment les contraintes primaires sont conservées "on-shell", mais également les contraintes secondaires
le sont. Dans ce cas, il est immédiat, via (232), que QT est de première classe "on-shell".

11 Symétries dans un système à hamiltonien total

Jusqu'ici, les équations/relations dérivées, notamment les propriétés des charges de Noether, tirent
leur origine d'une symétrie dans un système lagrangien. On souhaiterait alors discuter de symétrie
obtenue directement dans un système hamiltonien, ce sans se référer à un système lagrangien. Dans
cette section, on va introduire les variables xM (1 ≤M ≤ 2N) pour désigner les positions et moments ;
xα = qα et xα+N = pα. Dé�nissons la matrice JMN = {xM , xN} :

(J)MN

(
0 δαβ
−δαβ 0

)
(234)

qui permet d'écrire de façon compacte {F,G} = ∂MFJ
MN∂NG et donc en particulier {xM , F} =

JMN∂NF .

11.1 Dé�nition de symétrie dans l'espace des phases

Une symétrie dans un système hamiltonien total est dé�nie comme étant une transformation dans
l'espace des phases :

• qui ne dépend que des variables de l'espace des phases (et pas des dérivées de ces variables) ;

xM −→ x
′M (x, t) (235)

• qui préserve la forme symplectique, c'est-à-dire JMN = {x′M (x, t), x
′N (x, t)}.

• qui préserve les solutions physiques du mouvement ainsi que les contraintes. Autrement dit, soit
un hamiltonien total HT (x, t;λ,w) comme en (83), si x(t) est solution de l'équation

ẋM = JMN∂NHT (x, t;λ,w) (236)

alors x
′M (x, t) doit être solution de l'équation

ẋ′
M

= ∂Nx
′M ẋN + ∂tx

′M = JMN∂′NHT (x′, t;λ′, w′) (237)

pour le même hamiltonien à un changement des paramètres λi(t) et whh
′
(t) près.

Ensuite, si la symétrie préserve les contraintes sur S et sur la surface du mouvement, alors :

φh(x′, t) ∼= cqh(x, t)φg(x, t) (238)
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Si la transformation est in�nitésimale, (x′ = εδx+ x), cette dernière devant obéir à la condition de
préservation de la forme symplectique, on a que :

J−1ML∂N (δxL) = J−1NL∂M (δxL) (239)

Ce qui signi�e que la 1-forme δxM = J−1ML∂N (δxL) est fermée et donc exacte sous les hypothèses du

Lemme de Poincaré. En e�et on trouve bien que d(δxM ) = J−1ML∂N (δxL)dxM ∧ dxN = Ω et, par (239),

les indices de sommation dans les composantes de la 2-forme permuttent, J−1ML∂N (δxL)dxM ∧ dxN =

J−1NL∂M (δxL)dxM ∧ dxN = −Ω, ce qui implique que Ω = 0 et donc la 1-forme est bien fermée.

Dès lors, par le lemme de Poincarré, il existe une fonction génératrice QH(x) de l'espace des phases
telle que :

δxM = ∂MQH(x) = {xM ,QH(x)} (240)

Toute transformation de la sorte (où δxM correspond au "gradient" d'une fonction) laisse la forme
symplectique invariante.

11.2 Transformation canonique dans l'espace des phases

Une transformation de symétrie se réfère à un hamiltonien total donné. Dans le cas de "trans-
formations canoniques", cet hamiltonien n'est pas spéci�é. On dé�nit une transformation canonique
x −→ x′(x, t) comme étant une transformation de coordonnées dans l'espace des phases telle que pour
tout hamiltonien total HT (x, t), il doit exister un autre hamiltonien total H′T (x′, t) véri�ant :

ẋ′
M

= ẋN∂Nx
′M + ∂tx

′M = jMN∂′NH′T (x′, t) (241)

Cette condition est équivalente à

JNK∂KHT (x, t)∂NHT (x, t) + ∂tx
′M = jMN∂′NH′T (x′, t) (242)

{x′M , x′N}∂′NHT (x, t) + ∂tx
′M = JMN∂NH′T (x′, t) (243)

Pour un hamiltonien total arbitraire et en notant x′M = J−1MNx
′N la condition d'intégrabilité mène

à :

∂′M{x′N , x′K}∂′KHT + {x′N , x′K}∂′K∂′MHT + ∂′Mx
K∂K∂tx

′
N (244)

= ∂′N{x′M , x′K}∂′KHT + {x′M , x′K}∂′K∂′NHT + ∂′Nx
K∂K∂tx

′
M (245)

Puisque cela doit être véri�é pour des hamiltonien HT (x, t) arbitraires, on déduit trois relations
indépendantes :

∂′M{x′N , x′K}∂′KHT = ∂′N{x′M , x′K}∂′KHT (246)

{x′N , x′K}∂′K∂′MHT = {x′M , x′K}∂′K∂′NHT (247)

∂′Mx
K∂K∂tx

′
N = ∂′Nx

K∂K∂tx
′
M (248)

Des choix di�érents d'hamiltonien nous permettent d'aboutir à certaines conclusions.

Imaginons le choix HT = x′Px′Q. la relation (247) nous indique que {x′N , x′K} est proportionnel à
δKN et donc que

{x′M , x′N} = f(x, t)JMN (249)

Le choix HT = x′P , nous mène à dire, via (246), que f(x, t) est indépendant de x :

∂Mf(x, t) = 0 (250)

La dernière relation (248) nous dit, elle, qu'il existe une fonction $(x′, t) satisfaisant ∂tx
′
M =

∂′M$(x′, t). Avec cela, on trouve alors que f(x, t) est indépendante du temps. Finalement, cette fonc-
tion n'est autre qu'une constante. En d'autres termes, les transformations canoniques laissent la forme
symplectique invariante à une constante près. En "normalisant", il est aisé de rendre la forme sym-
plectique invariante. Dès lors, les transformations canoniques conservent {x′M , x′N} = JMN .
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11.3 Critères pour être générateurs de symétrie

Nous allons regarder les propriétés de la fonction génératrice de symétrie QH de (240). Cette der-
nière doit respecter les conditions imposées par la dé�nition de transformation de symétrie.

Regardons une transformation in�nitésimale qui transforme l'hamiltonien total de la sorte :

HT −→ HT +
∂HT
∂xM

δxM +
∂HT
∂λi

δλi +
∂HT
∂whh′

δwhh
′

(251)

Le calcul de {δxM ,HT }+ ∂t(δx
M ) donne, quelque soit l'hamiltonien :

{δxM ,HT }+ ∂t(δx
M ) = δxL∂L{xM ,HT }+ {xM , γ(1)i δλi +

1

2
φhφh′δw

hh′} (252)

Où les indices h et h′ parcourent toutes les contraintes. Il s'agit d'une équation aux dérivées partielles
dont les inconnues sont les δxM (x, t). La solution générale de cette équation peut donner l'ensemble
des symétries d'un système hamiltonien donné.

En outre :

δxM∂Mφh = {xM ,QH}∂Mφh = {QH , φh} ∼= 0 (253)

Et donc QH est de première classe sur la surface du mouvement.
On réécrit l'équation (252) sous la forme :

{{xM ,QH},HT } = −{QH , {xM ,HT }}+ {xM , γ(1)i δλi +
1

2
φhφh′δw

hh′ − ∂tQH} (254)

En appliquant l'identité de Jacobi, on trouve alors :

{xM , {QH ,HT }+ ∂tQH − γ(1)i δλi − 1

2
φhφh′δw

hh′} = 0 ∀xM (255)

Cela implique que l'élément de droite dans le crochet est égale à une fonction arbitraire du temps.

{QH ,HT }+ ∂tQH − γ(1)i δλi − 1

2
φhφh′δw

hh′ = f(t) (256)

En redé�nissant le générateur QH −→ QH +
∫ t
t0
dt′f(t′), redé�nition permise car elle n'apporte pas

de modi�cation à la transformation de symétrie δxM = {xM ,QH}, on peut se débarrasser de cette
fonction arbitraire.

On conclut alors que la condition nécessaire et su�sante pour qu'une quantité de première classe
"on-shell" QH(q, p, t) soit un générateur de symétrie d'un certain hamiltonien total HT (p, q, t;λ,w)
est :

{QH ,HT }+ ∂tQH = γ
(1)
i δλi +

1

2
φhφh′δw

hh′ (257)

11.3.1 Charges de Noether et constantes comme générateurs

La condition nécessaire et su�sante dérivée ci-dessus dictant le caractère ou non de symétrie d'une
quantité QH permet de con�rmer que, en particulier, les charges de Noether Q dans un système sans
contraintes sont des générateurs de symétrie globale. En e�et, dans ce cas, il n'y a pas de symétrie
de jauge, ce qui implique δλi = 0 = δwhh

′
, et Q étant une intégrale première du mouvement, on a

immédiatement {Q,H}+ ∂tQ = 0. De façon générale, toute quantité qui est de première classe et qui
est conservée sur la surface du mouvement est un générateur de symétrie. En e�et, a�rmer qu'une
quantité est constante sur les équations du mouvements revient à dire que le crochet de cette quantité
avec l'hamiltonien additionné de sa dérivée partielle par rapport au temps est égale (et pas égale mo-
dulo le mouvement) à zéro.

Les charges totales de Noether, elles, sont des générateurs de symétrie dans un système à contraintes
à la condition que {QT ,HT }+ ∂tQ est une contrainte de première classe.
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11.3.2 Dans le cas statique

Dans le cas où hamiltoniens de première classe et contraintes ne dépendent pas explicitement du
temps (l'hamiltonien total reste dépendant du temps car les fonctions de jauge sont des fonctions du
temps), l'hamiltonien total est lui-même un générateur de symétrie étant donné que

dHT
dt
≡ 0⇒ {HT ,HT }+

∂HT
∂t

= 0 (258)

Si, en plus, il n'y a aucune contrainte secondaire de première classe dans le système, autrement dit
si toutes les contraintes de premières classe sont des combinaisons linéaires des contraintes primaires

de première classe, alors QH = εi(t)γ
(1)
i est générateur de symétrie de jauge :

{QH ,HT }+ ∂tQH = γ
(1)
j T ji ε

i(t) + ε̇i(t)γ
(1)
i (259)

Autrement, εi(t)γ
(1)
p est aussi générateur de symétrie de jauge si le crochet de γ

(1)
i avec l'hamiltonien

est quadratique en les contraintes φh :

{QH ,HT }+ ∂tQH =
1

2
φhφh′T

hh′
i εi(t) + ε̇i(t)γ

(1)
i (260)

Plus généralement, εi(t)γ
(1)
i est générateur de symétrie si le crochet de ces contraintes primaires

de première classe avec HT est la somme d'un terme linéaire en les contraintes primaires de première
classe et d'un terme quadratique en les contraintes primaires et/ou secondaires φhφh′ .

11.3.3 Exemple

Soit le lagrangien L(x, y, ẋ, ẏ) = 1
2e
yẋ2. La contrainte primaire est φ1 = py, elle est de première

classe. Les équations du mouvement indiquent que x(t) = x0, et donc px n'est pas générateur de sy-
métrie de jauge.

L'hamiltonien canonique de ce système est Hc = 1
2e
−yp2x et le total est HT = 1

2e
−y(px)2 + pyλ(t).

Grâce à l'hamiltonien, on trouve la seconde et dernière contrainte : il s'agit de φ2 = px qui est de
première classe. On fait ainsi face à un contre-exemple de la conjecture de Dirac car on a une contrainte
de première classe px qui ne génère pas de symétrie de jauge.

On a toutefois que :

{py,HT } =
1

2
e−y(px)2 (261)

{py,HT } correspond bien à une forme quadratique en les contraintes de première classe. Donc
QH = ε(t)py est génératrice de transformation de symétrie mais cette quantité ne génère qu'une trans-
lation arbitraire de la variable de jauge pure y :{y,QH} = ε.

On peut aussi reprendre l'hamiltonien (113). Remarquons qu'il n'existe pas de lagrangien qui per-
mette de fournir cet hamiltonien.

L'hamiltonien lui-même est générateur de symétrie puisque ∂tHT = 0. Des transformations de
symétrie (globale) sont δxM = {xM ,HT }. Cela témoigne de la conservation de l'énergie ; dans un
système lagrangien, la symétrie serait une symétrie sous translation dans le temps. Les contraintes
primaires de première classe sont γ1 = πλ et γ2 = πµ. Un générateur de symétrie de jauge est alors
G = ε1πλ + ε2πµ ; il génère des transformations de jauge simples :

δλ = {λ,G} = ε1 ; {µ,G} = ε2 (262)
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Les autres transformations sont nulles.

La contrainte secondaire de première classe γ3 = πν ne génère pas de symétrie de jauge car δH =
{πν ,H} = 0. Laissant l'hamiltonien invariant, cette contrainte est en fait génératrice d'une symétrie
globale. Une autre façon de comprendre la chose est de se dire que {πν ,H} = 0 implique que δλi =
δwhh

′
= 0, ce qui traduit le fait que le système ne subit pas de transformation de jauge et que donc

la symétrie ne peut être que globale (en d'autres termes, on a une constante de Noether, quantité qui,
on le sait, génère des symétries globales).

11.3.4 Dans un système hamiltonien étendu

Dans le formalisme de l'hamiltonien étendu, toutes les contraintes de première classe correspondent
à une symétrie de jauge si le système est statique ;

QE = γIε
I(t) (263)

est un générateur de symétrie de jauge (ou symétrie locale). Ces générateurs ne sont autres que
des combinaisons linéaires des contraintes, ils sont donc faiblement nuls. On note que les générateurs
de symétrie globale ne s'annule pas sur la surface des contraintes. On comprend alors que seules les
symétries globales dé�nissent des charges conservées non-triviales.

11.3.5 En électromagnétisme

Une combinaison linéaire QH = γ
(1)
a εa(t) + γ

(2)
s εs(t) des contraintes primaires et secondaires de

première classe γ
(1)
a et γ

(2)
s est génératrice d'une symétrie de jauge si les fonctions locales εa(t) et εs(t)

satisfont
dεs(t)

dt
+ T sr εr(t) + T sa εa(t) = 0 (264)

En e�et, les contraintes de première classe sont telles que, comme la dérivée totale par rapport au
temps d'une contrainte de première classe reste de première classe dans le cas statique :

{γ(1)a ,HT } = γ
(1)
b T

b
a + γ(2)s T sa (265)

{γ(2)s ,HT } = γ(2)r T rs + γ(1)a T as (266)

Ce qui implique :

{QH ,HT }+ ∂tQH = γ(1)a ε̇a + γ(2)s ε̇s + {γ(1)a ,HT }εa + {γ(2)s ,HT }εs (267)

= γ
(1)
b (εaT ba + εsT bs + ε̇b) (268)

+ γ(2)s (εaT sa + εrT sr + ε̇s) (269)

On voit bien que (264) doit être satisfait pour que QH soit bien générateur de symétrie de jauge.
Nous pouvons noter que si on trouve que dεs

dt = 0, alors les εs sont des constantes et les contraintes
secondaires de première classe génèrent des symétries qui sont globales.

Un exemple qui illustre cela est celui de l'électromagnétisme. Déterminons avant tout l'hamiltonien
à partir du lagrangien de Maxwell. Nous savons que la densité lagrangienne et le lagrangien sont :

L = −1

4
FµνF

µν ; L =

∫
d3xiL (270)

Où Fµν = ∂µAν−∂νAµ. Notons que ce lagrangien reste inchangé (δL = 0) sous les transformations
Aµ → Aµ + ∂µΨ(x) et/ou A0 → A0 + Υ(x). En développant FµνF

µν et en prenant la métrique de
Minkowski conventionnelle (−,+,+,+), on a que :

L = −1

2
∂iAjFij − ∂0Ai∂iA0 +

1

2

∑
i

(
(∂iA0)

2 + (∂0Ai)
2
)

(271)
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Les moments sont calculés à partir de la densité lagrangienne :

Π0 =
∂L

∂(∂0A0))
= 0 =⇒ contrainte primaire ⇒ A0 = F(xµ) (272)

Πi =
∂L

∂(∂0Ai))
= ∂0Ai − ∂iA0 = F0i (273)

⇒ ∂0Ai = Πi + ∂iA0 (274)

La densité hamiltonienne canonique peut maintenant être calculée.

Hc = Πi∂0Ai − L (275)

=
1

2
ΠiΠi + Πi∂iA0 +

1

2
∂iAjFij (276)

Avec ∂iAjFij = 1
2FijFij . L'hamiltonien canonique qui en découle est, en prenant

Πi∂iA0 = ∂i(A0Π
i)−A0∂iΠ

i :

Hc =

∫
d3xiHc =

∫
d3xi

[1
2

ΠiΠi −A0∂iΠ
i +

1

4
FijFij

]
+ termes aux bords (277)

Et l'hamiltonien total est, quant à lui :

HT =
1

2
ΠiΠi −A0∂iΠ

i +
1

4
FijFij + λ(x) (278)

HT =

∫
d3xi

[1
2

ΠiΠi −A0∂iΠ
i +

1

4
FijFij + λ(x)

]
(279)

La contrainte primaire est φ(1) = Π0, elle permet de déterminer une contrainte secondaire :
{Π0(x),HT (y)} = ∂HT

∂A0
= ∂iΠ

i = φ(2) 3. Ces deux contraintes sont de première classe. Le généra-
teur de symétrie de jauge est une combinaison linéaire des contraintes primaires et secondaires de
première classe :

QH =

∫
d3xi[ε(1)(x)∂iΠ

i + ε(x)Π0] =

∫
d3xi[ε(x)∂iΠ

i − ∂0ε(x)Π0] (280)

Cette dernière égalité est une conséquence du fait que la relation (264) doit être satisfaite. Les
crochets des contraintes avec la densité hamiltonienne nous indiquent que seul T sa est non nul et
vaut 1. Il en découle que ∂0ε(x) + 1ε(1)(x) = 0 et donc ε(1) = −∂0ε.

Il est maintenant possible de déterminer la symétrie générée par QH ; il su�t de calculer
δAµ = {Aµ(x),QH(y)} :

δA0 =
∂

∂Π0(x)

∫
d3yiδ3(x− y)[ε(y)∂iΠ

i − ∂0ε(y)Π0] =
∂

∂Π0(x)
(−∂0ε(x)Π0(x)) (281)

= −∂0ε(x) (282)

δAi =
∂

∂Πi(x)

∫
d3yiδ3(x− y)[ε(y)∂iΠ

i − ∂0ε(y)Π0] (283)

=
∂

∂Πi(x)

[
εΠi
]bords − ∂

∂Πi(x)

∫
d3yiδ3(x− y)ε(y)∂iΠ

i (284)

= −∂iε(x) (285)

En bilan, nous retrouvons, rassurés, la transformation de symétrie bien connue

δAµ = ∂µ
(
− ε(x)

)
(286)

3. Note ; on aurait {Π0(x),HT (y)} = − ∂Π0(x)

∂Π0(z)

∂HT (y)
∂A0(z)

= −δ3(x− z)
∫
d3yiδ3(z − y) ∂HT

∂yi
=

∑
i
∂Πi

∂zi
δ3(xi − zi) = ∂iΠ

i
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