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1 Introduction

1.1 Discussion préliminaire

Tous les systémes dynamiques ne satisfont pas aux hypothéses du théoréme d’existence et d’unicité
de Cauchy; il se peut que les équations lagrangiennes du mouvement les gouvernant ne peuvent s’écrire

sous la forme normale :
" =F*(q",¢") qgsoit a€{l,..,N} (1)

Les systémes dont les équations du mouvement ne peuvent s’écrire sous la forme normale (1) sont
dits & invariance de jauge. ils jouent un réle fondamental en physique. Leurs équations lagrangiennes
du mouvement ne sont plus toutes indépendantes et la transformation de Legendre menant au for-
malisme hamiltonien est telle que les variables canoniques sont restreintes par des contraintes. Dés
lors, les systémes & invariance de jauge ont la propriété de présenter des fonctions arbitraires dans
I'expression de la solution générale des équations du mouvement. Les chapitres qui suivent donnent
une bréve description des systémes & invariance de jauge et donc présentant des contraintes dans leur
formulation hamiltonienne, le but étant de fournir une méthode de résolution des équations du mou-
vement ainsi que de discuter de diverses notions liées aux contraintes du systéme hamiltonien et aux
transformations de jauge. L’étude des systémes & invariance de jauge est importantes car les théories
de I'électromagnétisme, de la gravitation, des intéractions fortes et faibles, des cordes,... présentent de
tels systémes.

Ce papier est trés fortement inspiré du chapitre 5 du livre de Philippe Spindel "MECANIQUE;,
Volume 2, Mécanique Analytique" [1], de I'article de Xavier Beckaert et Jeong-Hyuck Park "Symmetries
and dynamics in constrained systems" [3] et quelque peu de "Quantization of Gauge Systems" de Marc
Henneaux et Claudio Teitelboim [2].

1.2 Exemple introductif

Commencons tout d’abord par I’étude rapide d’un lagrangien particulier, & savoir :

1

L= (-9 @)

On voit que ce systéme est invariant sous la transformation

oy=f or=/f

ou f est une fonction du temps arbitraire. En appliquant les équations d’Euler-Lagrange, on trouve
une unique équation :
rT=y

Et donc la solution générale du systéme fait apparaitre une fonction arbitraire F(t) :

Si 'on veut effectuer une étude hamiltonienne du systéme, il faut avant tout remarquer que le
moment p, est nul, L ne dépendant pas de z :

_g_()

Dz

Par conséquent, = ne peut étre exprimé en fonction des variables (x,y,ps,py). L’hamiltonien se
voit alors étre difficilement définissable.

En outre, on réalise que la matrice cinétique 2 x 2, W, est singuliére,

d*L 0 0



Or le caractére non singulier de cette matrice est nécessaire pour passer du formalisme lagrangien
au formalisme hamiltonien sans anicroche.

Rien n’est pour autant perdu, mais il est clair qu'une étude de systémes de la sorte est nécessaire.

2 Identités de Noether

2.1 dérivation des identités

Plagons-nous dans ’espace des configurations de dimension N. On se rappelle que pour des trans-
formations infinitésimales :

4 — ¢ + €05 (q,q,t)  avec §q% = €'l (3)
d i . d
¢ — "+ pr “03(q,q,t)  avec 6¢° = = € ¥a (4)

ol a varie de 1 & M, si le lagrangien reste invariant & une dérivée totale par rapport au temps prés
%(eaFa), les équations du mouvement admettent M intégrales premiéres du mouvement :

oL .
K, = SO‘?W — Fu(q,9) (5)

Supposons maintenant que € soit une fonction arbitraire, c¢’est-a-dire €* = e¢f?®(t). Le calcul de la
variation de I’action S sur une trajectoire quelconque nous permet de trouver les identités suivantes :

o~ G )]s =0 ©

Les trajectoires étant quelconques, on trouve, aprés avoir développé la dérivée par rapport au temps,

2 2
8‘51 8L, z0o = 0. Autrement dit, la matrice cinétqiue Wog = 82 BL' 7 admet M vecteurs propres avec
q"9q q"9q

la valeur propre 0. Il en résulte que la matrice cinétique n’est pas inversible.

que

On retient alors qu’une symétrie sous transformation de jauge du systéme dynamique dans 1’es-
pace des configurations, c’est-a-dire une transformation de symétrie présentant une fonction arbitraire
f(t), implique que la matrice cinétique est singuliére. Par conséquent, les équations du mouvement
ne peuvent étre sous la forme normale (1), et des fonctions arbitraires apparaitront dans la solution
générale des équations du mouvement.

Remarquons que des dérivées peuvent apparaitre dans la transformation infinitésimale : en plus
d’avoir une fonction ef*(t) dans les transformations infinitésimales, il est tout a fait possible de trouver,
dans ces transformations, certaines des dérivées de f?(t),

dkfa
Z P (7)

Dans ce cas, les identités de Noether sont
P

k
ST (AL PN

0 (8)



Cela se déduit de :

= / [0+ Gy o )
dk a oL

Z P + G(W@ 1N (10

oL , d /oL fo dk fa(t)
”/Hwﬂﬂcﬂwﬂd} Z Tl e (1)

OL oL
(g0 ) te (5(y¢a2fa) , (12)
— .. (13)
P

:6/fakzo(_l)kc;lt]jf{[§; dt(gL)}gpak}dt—#—termes aux bords (14)

En développant les dérivées par rapport au temps, on voit que, au final, il n’y a qu’un seul terme
comprenant le coefficient d”*2¢%/dt” +2<p3‘7 n- Par conséquent, on retrouve une égalité analogue a ce
qui a déja été établi :

82
=0 (15)
P

2.2 Exemple

Reprenons le lagrangien de 1’exemple introductif et considérons les transformations :

0z = ef(t) = e(@f f(t) + T (1)) (16)
Sy = ef(t) = e(PYf(t) + P f (1)) (17)
(18)

Autrement dit, £(t) = ef(¢) pour la variation de y et la dérivée de f apparait dans la variation de x.

On a donc que

Wo=p1=0 et pi=95=1 (19)
On trouve bien que la variation de L est une dérivée par rapport au temps (d’une constante) :
L= (z—y)(éx - dy) (20)
= (x = 9)e(f(t) = f(1)) (21)
=0 (22)
L’identité de Noether est alors ici
d 0L o d oL
Lo 4,—147ﬂz 2
dt 0y b+ g (D gewi] =0 (23)
On peut en effet calculer explicitement, sachant que g—’; =x—yet % =y —ux,
d 0L d ,0L
a0y atlgp ) = U ety (24)

Finalement on trouve I’égalité suivante qui fournit un vecteur propre & valeur propre nulle de la
matrice cinétique :

01)’ =0 (25)

en accord avec ( ) < )=o) (26)
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3 Transformation de Legendre singuliére

Les variables p, sont telles que :

oL

%= = Palq,q,1) (27)

Etant donné le caractére singulier de la matrice cinétique W, il ne sera pas toujours possible d’écrire
que ¢* = Q%(q, p,t) via (27) ; I'image par la transformation de Legendre de I’espace des configurations
sera une sous-variété V et seules 2N — M variables de vitesses pourront s’exprimer comme des fonctions
des ¢ et des p. En outre, de (27) seront issues M relations définissant la sous variété )V de 'espace des
phases :

Pa =

oV (g,p,t) =0 (28)

Ces relations sont appelées contraintes primaires (on suppose leur gradient bien défini et non nul).

En remplagant, dans (28), les variables p par leur expression (27), et en dérivant par rapport aux
variables de positions et vitesses, on trouve que les M vecteurs de composantes

1)
O’ (29)
Opg lp=p(a.q:t)

sont les vecteurs propres a valeur propre nulle de W. Aussi, la contre-image d’un point P de V par
la transformation de Legendre est un sous-espace de dimension M de 'espace des configurations. Si

. ~ . (1)
(G, q) appartiennent a la contre-image de P, il en est de méme pour le point (¢, q + umagT’Z) :
. ) ‘
Palq,q” +u™ ="Palq,q 30
@ 3]?,8 p=p(; q)) 2(d4) (30)

En général, une fonction F'(q,q,t) est une fonction sur V si et seulement si elle est constante sur
les contre-images de chaque point de V :

0o\

)= F(q,q,t
8]9/3 p=p(a,d)’ ) (2.4

F(G,¢° +u™ (31)

~—

En développant F(q .¢° +um?e 8¢m » t) a l'ordre un, on voit que cela signifie que F' doit vérifier les

relations :

gc;%?; p=Plai) (32
En particulier, la fonction d’énergie :
W (g, q,t) = Paq” = L(q,4,1) (33)
vérifie (31). On a, compte tenu des contraintes :
W(q,q,t) = hlg, P(g,q,1), 1] (34)

sur la variété V.

C’est a partir de cette relation (34) que l'on définit ce qu’on appelle ["hamiltonien canonique : il
s’agit de I'ensemble des fonctions de I’espace des phases qui coincident avec h(q, p,t) sur V. En notation
de Dirac, on introduit le symbole ~ appelé égalité faible qui indique que 1’égalité se fait modulo les
conditions imposées par V. Et donc un hamiltonien canonique est une fonction faiblement égale &
h(g,p,1).

He(g,p,t) = h(q,p,1) (35)

Le choix de H.(q, p, t) est trés arbitraire. Si Hc(q, p,t) vérifie bien la condition (35), alors on pourrait
tout a fait choisir comme hamiltonien canonique la fonction H.(q, p,t) définie par :

He(q,p,t) = Helg, p,t) + C™(q,p, )0 (g, p, 1) (36)

ou les C%q, p,t) sont des fonctions arbitraires des variables canoniques q et p.



4 Complément sur les contraintes primaires

Ici, nous analysons de facon plus approfondie la notion de contrainte primaires et nous donnons
une autre définition de I’hamiltonien canonique, définition équivalente & celle ci-dessus.

4.1 Contraintes primaires et surface des contraintes

Reprenons la relation (27) définissant les N moments; on a p, = fa(q, q,t). Le but est désormais
d’essayer d’inverser ces relations afin d’exprimer les vélocités ¢” en fonctions des g, des p et éventuel-
lement du temps.

Si certains des moments, notés p,, dépendent non-trivialement de certaines vitesses, notées ¢, alors
- a . N . 2 2 Lz - m . .
ces ¢ en question peuvent étre exprimées en termes de p, et d’autres vélocités ¢, ainsi que des ¢ et
du temps :

i" = h*(q" pad™ 1) (37)
Les autres moments qui ne sont pas des p, sont notés p,,, ils sont fonctions de (¢%, pq, qm, t) et ne

-m IR . . . . y L
pourront pas permettre aux ¢ d’étre exprimés en fonctions des moments. Une fois que ’'on a trouvé
tous les ¢" pouvant s’écrire comme (37), et donc distingué tous les ¢, on obtient :

qa = h&(qaapaaqmvt) 5 Pm = fm(qa,pa,t) (38>

Les a et m, ainsi que les a et 7h forment des ensembles distincts : {a} N {m} = 0 = {a} N {rh}
(et aussi, {a} U {m} = {a} = {a} U {m} ). Remarquons que p, n’est pas nécessairement la variable
conjuqué de ¢“, mais il v a tout de méme une relation 1-1 {a} +— {a}. Les ¢ ™ sont des variables
indépendantes, de méme que les p,. A I'inverse, les p,, et ¢” ne sont pas indépendantes : ils s’expriment
comme (38).

Si le systéme est soumis & M contraintes primaires, alors on compte dans l’espace des phases M
relations indépendantes :

Gm(P; 4, t) = pm — fm(q¥, Past) (39)

Ces contraintes primaires définissent la surface des contraintes primaires V' de dimensions 2N — M :

V={®ad| omlpqt)=0, 1<m<M} (40)

Etant donné l'indépendance de ces relations, les M vecteurs & N coordonées :

_ (8¢m I, 8¢m)‘ (41)

_>
aqum}v Op1’ Op2 " Opn

Sont linéairement indépendants.

Sur la surface des contraintes primaires, tout point peut étre repéré par 2N — M variables indé-
pendantes z'. Ainsi, les points (p, q) de V correspondent a une fonction f des variables ' et du temps
si les contraintes dépendent explicitement du temps :

V=A{pq) = f(z,t)} (42)

En outre, les contraintes indépendantes peuvent étre vues comme des variables indépendantes ¢,
de sorte que tout point de l'espace des phases peut étre repéré par les coordonnées (z*, ¢,,) et pour
une fonction arbitraire de I'espace des phases F'(q,p,t), on peut définir M fonctions F™(p,q,t) telles
que :

F(p,q,t) == F(x,¢,t) = F(2,0,t) + ¢ F™(p, ¢, t) = F(p, g, 1) ,t G (D, q, 1) (43)



4.2 Contraintes a partir des équations d’Euler-Lagrange
Nous allons travailler ici avec les variables indépendantes (¢%, ¢"™, pa, qm) Les équations d’Fuler-
Lagrange du mouvement sont alors équivalentes a :

dpa _ 0L(q,41)

= X R 44
dt 0q° ‘qa=h"'(q",pmt’1m7t) (49
dfm(qa,pa,t) _ 8L(Q7Q7t) (45)
dt 8qm qa’:hd(qa’pa7qm7t)
dqd _ G/« i . dq’fﬁ _

Avee  —- = h"(¢%pa,d" 1) 5 =4 (46)

Ce qui nous conduit, en substituant (44) et (46) dans (45), & :
ht == A ) = ) 47
o T agn T ope  agm lif—m T ot D™ litna (47)

m appartenant a {1,..., M}. Ces M relations en (47) constituent M contraintes pour les va-
riables ¢ ; certains ¢ deviennent des fonctions des autres variables indépendantes ou bien des para-
métres totalement indépendants. Une fois les ¢ déterminés, 'évolution dans le temps des coordonnées
(q%, q™, pa) est donné par les équations (44) et (46). Toutefois, il arrive que les contraintes (47) soient
non linéaires en les qm et donc difficiles & résoudre. On peut alors utiliser les 2/N variables indépen-
dantes (¢, pa,q") (et non les ¢"), ot les ¢ sont telles que les contraintes (47) sont linéaires en les
-m

q

4.3 Hamiltonien canonique

Une autre fagon de définir ’hamiltonien canonique, tout a fait équivalente a (35), est de prendre
la définition d’hamiltonien H = ¢“po — L tout en prenant en compte que ¢* = h%(¢®, pa,q ", t) et en
considérant les variables indépendantes (¢, ¢, pa,q"").

He(q®, Part) = " P — L(q, ¢, 1) (48)
= hd<qaapav qmv t)pd + qmpm - L(qaa h&(qaaplla qmv t)v qm) (49)
= q"pa+ ¢" fm(q®,past) — L(¢* h*(q%, par 4" 1), ") (50)

A une combinaison linéaire des contraintes primaires preés.

Ot
8(»]7”

On montre (heureusement) que H. n’est pas fonction des vélocités qm en calculant qui est une

quantité nulle.

5 Equations hamiltoniennes du mouvement

5.1 A partir d’un hamiltonien canonique

Soit un hamiltonien canonique H.(q,p,t) avec p exprimé comme en (27) (on a alors la fonction
énergie). Si on évalue la différentielle de W(q, ¢,t) = H.(q,p(q,q,t),t), on trouve que :

1
e o
1
=20 52
ok (¢.p,t) =0 (53)
Ces équations peuvent se réécrire sous forme d’égalités faibles :
§* ~ {g* He+u™ o)} (54)
P {pa He +u™ {3} (5)



5.2 Des équations d’Euler-Lagrange

Il est possible de retrouver les équations du mouvement partir du lagrangien L(q,q,t) et en
prenant comie variables indépendantes (¢%,pa, ™, t). A partir de lhamlltomen canonique (50), o
trouve directement, en réalisant les dérivées partlelles et avec ¢* = h%(q%, pa, 4™, t) :

8%C(Q7pb>t) -a ma¢m

7 i ve (56)
ch(q,pb, t) _ aL(Qv q, t) _.m agbm
o~ o e 0 o (58)

On voit ainsi que les multiplicateurs u™ des équations de la section ci-dessus correspondent aux
vélocités ¢"™ indépendantes. On peut exprimer les vélocités et moments en termes de (¢%, pq, ¢™,t) :

He(q,06,t) .y Obm

i asy .m?t
G“(q,pa-q" ) = Opn +q e (59)
dp, o 8HC(Q7pb7 t) .m 8fm
dt 0q® 0q® (60)
dfm a%C(Q7pb> t) .n 8fn
Jmo_ 1
dt g™ * oqm (61)

5.3 Hamiltonien total et équivalence entre formalisme hamiltonien et lagrangien

11 est trés utile d’introduire ce que ’on appelle I’ hamiltonien total défini par :

Hr(q%, ps,u™ 1) == Hce(q", Pas t) + dm(q®, pg, )™ (62)
Cet hamiltonien est introduit pour décrire la dynamique hamiltonienne de fagon plus compacte :

Opa 1V ¢ dq vy Oq“

La dérivée totale d’une fonction F(p,q,t) sur la surface des contraintes primaires est donc, sous
forme de crochets de Poisson :

dF

oF oF
vy ~{F, Hr} —l— o T "o = {F,Hr} + 5 onT shell (64)

En outre, sur la surface des contraintes primaires V également, 'hamiltonien total est égal & I’ha-
miltonien canonique :

OHr
Hr~H:. ; e 0 (65)
A partir d’un hamiltonien total, on peut montrer qu’il y a équivalence entre les formalismes hamil-

tonien et lagrangien.
Partons d’un hamiltonien H.(p, q,t) dans I’espace des phases & 2N dimensions. Donnons-nous M
contraintes arbitraires ¢, indépendantes ; cela nous permet d’introduire M variables v indépendantes

et aussi de dire que M moments dans 'espace des phases sont données par p,, = fin(q%, pp, t).

L’hamiltonien total est défini comme en (62). Le principe d’action est tiré de I’action :

S[qo‘,pg,ul,t] = /dt(paqo‘ — HT) (66)

Ce qui meéne aux équations d’évolution des variables de positions :

GHT ‘
Opq v

¢*(q, pa, u',t) =



Si on suppose qu’il est possible d’exprimer les variables de l’espace des phases en fonction des
positions et vitesses

Pa =Da(q:4,t) 5 Pm = fm(q,Pa(q: ¢; 1)) 5 u™ =u"(q,q,1) (68)
Alors, on peut définir le lagrangien :
L(q,4,t) := (¢*pa — He(p, g, 1)) (V = (§"pa — Hr(p, q, u,t)) (V (69)
La dynamique lagrangienne est ainsi obtenue :
dL(q,4,1) ( .50ps  Opg aHT)‘ .
= o A Aia A =palq, q,t 70
D Patd 500 9 ops v Palq,d,t) (70)

8L(devt) _ (apﬁ q,B o a/HT apﬁ - 8/HT)‘ _ _aHT(pa %u’t))) (71)
Oq” oq® Opg 0¢*  0q* /v 0q” v
Pm = fm(Q7pa(q)(j7t)vt) (72)

Cela montre I’équivalence entre le formalisme hamiltonien et le formalisme lagrangien, avec pour
hypotheése le fait qu’il est possible d’écrire (68) (le terme adéquat est : on suppose l'existence d’une
carte inverse (¢%, %) — (¢%, pp, u™)).

6 Cohérence des équations

6.1 Contraintes secondaires

Les contraintes primaires (28) devant étre préservées au cours de I’évolution du systéme, les vecteurs
définis par les équations du mouvement doivent étre partout tangents & la surface V et & chaque instant.
La préservation des contraintes primaires se traduit par :

(1
gbfn) ~0 ou {oV) Hrl+ 80l ~0 (73)

11 se peut alors que de nouvelles contraintes apparaissent. On les appelle contraintes secondaires. Ces
derniéres devant étre également préservées, il se peut qu’elles fournissent des contraintes tertiaires, elles-
mémes pouvant donner des contraintes quaternaires, et ainsi de suite. Toutes ces nouvelles contraintes
(il y en a KC) sont notées gbfj} oum € {M+1,..., M + K}. Le mouvement a donc finalement lieu sur
une surface des contraintes S de dimension 2N — M — K.

6.2 développement de I’hamiltonien total et hamiltonien de premiére classe

Nous notons :

dpalg,p) =0 Ae{l,..M+K} (74)

I’ensemble de toutes les contraintes. Elles vérifient par définition le systéme de M + K équations
{a, Hel +u{da, 85} + Orda = 0 (75)
a M inconnues u"™.
La solution générale de ce systéme est :
u™ =a"(q, i t) + N (UG (g, p,t) (76)

Ou @™ est une solution particuliére de I’équation (75), les A’ sont des fonctions arbitraires du temps

et les U(lm)(q, p) sont des solutions de ’équation homogene, donc elles vérifient :

Ui{da, 6} =0 ie{l,..,r <M} (77)

10



I’indice i ne parcourt qu’une partie des contraintes primaires, & savoir les contraintes primaires ET
de premiére classe. La définition de premiére classe sera spécifiée par la suite.

A partir d’'un hamiltonien canonique H. choisi et d’une solution particuliére @ (q,p,t), on peut
construire 1’hamaltonien total : 4
Hr = He +0"00) + XU 6L (78)

qui dépend de r fonctions arbitraires ().

On définit également les r fonctions
1 m
1 = Urel) (79)

Et on introduit le symbole ” =< 7 qui traduit une égalité faible sur la surface de toutes les contraintes
S. L’égalité G < R est ainsi une égalité modulo les contraintes primaires et secondaires. On peut parler,
pour faire la différence avec 1’égalité faible, d’égalité ” trés ” faible entre G et R. Les fonctions (79)
sont telles que :

(a1 =0 (80)

Ces fonctions sont dites de premiére classe. Par définition, une fonction de premiére classe est une
fonction dont le crochet de Poisson avec toutes les contraintes est "trés" faiblement nul. Les fonctions
qui ne vérifient pas cette propriétés sont dites de deuziéeme classe.

Ainsi, ’hamiltonien total correspond a la somme d’un hamiltonien de premiére classe
Hp = He + amplV (81)
et d’une combinaison arbitraire de r contraintes primaires de premiére classe.

Il est & noter que le crochet de Poisson de deux fonctions de premiére classe reste une fonction
de premiére classe (cela se prouve en utilisant l'identité de Jacobi) et, si Hp ainsi que toutes les
contraintes de premiéres classe ne dépendent pas explicitement du temps, alors le crochet de Poisson
de la dérivée d’une contrainte de premiére classe avec une contrainte de premiére classe reste une
fonction de premiére classe. Aussi, on peut montrer que la restriction sur S et la dérivée sont deux
opérations qui commutent :

%(F(p,QJ)!S) = (%F(p7q7t))(3 (82)

Deés lors que les contraintes secondaires, tertiaires,... sont toutes bien définies, on peut généraliser
Ihamiltonien total en additionnant & (62) des termes quadratiques en les contraintes.

1 / ; 1 /
Hr = Ho + T + Sononw™ = Hp + Xl + S (83)

Ou h, h' parcourent toutes les contraintes; 1 < h,h/ < M + K. Cette "nouvelle" définition de 1’ha-
miltonien total ne modifie en rien les équations du mouvements, le mouvement ayant lieu désormais
sur S, 1a ol toutes les contraintes s’annulent.

De par le fait que :

o s | D00
{¢h7HP} - {¢h7%T} —~ Qbh, s é)t = 875

On comprend que Hp et Hr sont tous les deux de premiére classe si les contraintes ne dépendent
pas explicitement du temps.

(84)
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7 Transformations de jauge

7.1 Transformations infinitésimales

On rappelle les équations du mouvement (63) sous forme de crochets de Poisson :

e 4 1

0"~ {q" Hr} = {¢" He} + N (0{g" ) (85)

. ; 1

P = {Das Hr} = {pa, Hp} + N () {pa, 1} (86)
On note que r fonction arbitraires A’ apparaissent dans I'expression de Hy. Les solutions des équa-

tions du mouvement correspondant & deux choix différents de ces fonctions arbitraires doivent étre
identifiés.

Les fonctions A’ sont dites fonctions de jauge et un choix particulier de la fonction constitue une
fization de la jauge. Dés lors, les transformations résultant des choix différents des fonctions A sont
dites transformations de jauge du systéme dynamique. Une transformation de jauge correspond donc
A une transformation du systéme lorqu’on passe de la jauge A’ a une autre \* 4+ 6\’

Considérons un systéme représenté, au temps to, par le point de coordonnées (¢“(to),p“(to)). A
Iinstant typ + €, ol € est infinitésimal, le systéme est représenté, dans la jauge A’ par le point de
coordonnées :

g2 (to + ) = ¢*(to) + e({a™, Hp} + X{a", 7((@'1))})‘q(t0),p(t0) (87)
P2 (to + €) = p*(to) + e({p™, Hr} + Xe0p™ 1 D oy e (88)

Dans la jauge voisine AL = ! + 6\%, on aurait :

G2 (to+ €)= ¢*(to) + e({a™ Hp + O + e Do (59)
(o] 7 o 1

= 4y (tO + 6) + €0 {q ’Véi))}‘q(to),p(to) (90)

P (to + €) = p&(to + €) + e\ {p?, 7((1'1))}‘q(t0),p(to) (91)

Lors d’une transformation de jauge, on a donc que la transformation canonique infinitésimale est

générée par la fonction 5)\ify((l.1))

5jaugeqa = EéAi{qav 7((3))} (92)
5jaugepa = EéAi{pav ’Y((Zl))} (93>

De fagon générale, tous les points de I'espace des phases pouvant étre transformés I'un dans l'autre
par des transformations canoniques engendrées par des contraintes primaires de premiére classe sont
physiquement équivalents. On dit qu’ils sont équivalents de jauge. Etant donné que deux choix de
jauge différents permettent tout de méme de décrire la méme physique, la présence des fonctions
arbitraires dans ’hamiltonien total induit que ’espace des phases contient des degrés de liberté non
physiques. En effet deux choix différents de fonctions arbitraires, A} et A5, forment deux hamiltoniens
totaux distincts et donc conduisent & deux évolutions différentes d’une variable Z au cours du temps.
07 ={Z, ’yl-(l)}(/\é — AD)dt. Tl n’empéche que ces deux jauges, bien que distinctes, décrivent la méme
physique; il y a symétrie de jauge.

7.2 Générateurs de symétrie de jauge

Les crochets de Poisson des contraintes primaires de premiére classe avec I’hamiltonien de premiére
classe possédent la particularité d’étre générateurs de transformation de jauge.
Pour montrer cela, considérons d’abord I’évolution dans le temps d’une variable Z pendant un temps
0ty décrite par I'hamiltonien total Hrp, c’est-a-dire sans fixer la jauge. Par aprés, ’évolution temporelle

12



est dictée par 'hamiltonien de premiére classe Hp, c’est-a-dire en fixant complétement la jauge, et a
lieu pendant un temps dts. La variable Z évolue ainsi de la sorte :

Z(to + 0ty + (5152) =Zo+ {Z() + {Z, 'HT}(Stl, ’Hp}(stg (94)
— otobts ({12, Hp} He} + {240 IV e} ) (95)

Considérons ensuite les mémes opérations d’évolution dans le temps de cette variable mais dans
Pordre inverse : d’abord Z évolue avec Hp pendant un temps dts, puis avec Hp pendant un temps 6ty.

Z(to+ 6ty + 0ta) = Zo + {Zo + {Z, Hp}dte, Hr}ot1 (96)
— otodts ({12, 1p} He} + {2, 1p} 21N (97)

Les deux hamiltoniens décrivant la méme évolution des états physiques mais dans des jauges dif-
férentes, les variables Z et Z a linstant to + 6t + dto sont équivalentes de jauge. D’ou la différence
entre Z et Z est une transformation de jauge. Par usage de Iidentité de Jacobi, évaluation de la
différence des variables Z et Z montre que le crochet des contraintes primaires de premiéres classe avec
I’hamiltonien de premiére classe est un générateur de transformations de symétrie de jauge.

(Z = Z)(to + 31 + 8ta) = o0t [{{Z, Hp}, 1IN = ({2,917 1N, 3} (98)
= it X | — (3" AZ.HpY) + (e (2.9} (99)
= 5t16t2\{ Z, {%P,’Yi(l)}} (100)

On peut également montrer que les crochets de Poisson impliquant les contraintes primaires de
premiére classe et une autre contrainte de premiére classe ou I’hamiltonien Hp sont des générateurs
de symétrie de jauge via l'introduction d’opérateurs formés & partir des transformations de jauge
infinitésimales. On déduit de (93) la transformation de jauge finie fournie par

Tlé ()] = &0 (101)

opérateur généré par eiy((il)). L

Les contraintes de premiére classe 7((1.1)) constituent des générateurs infinitésimaux de transformations
de jauge, et ils ne sont pas les seuls générateurs de telles transformations. De fait, ils définissent
une algébre qui nous méne & considérer que d’autres contraintes peuvent former des générateurs de
transformations de jauge. On en déduit que le crochet de Poisson de deux contraintes primaires de
premiére classe constitue un générateur infinitésimal de transformations de jauge. On peut montrer
cela en considérant la suite de transformations

T[T [e)Tl] =T (102)

que l'on applique & une coordonnée quelconque Z lorsque 7' et € sont infinitésimaux :

T(2) = T[T 1T (2 + ' (220} + i (12,401, 4)) (103)
= T1-e1T[=7)(Z + (& 4+ 7) (2,40} + i + 207 + ) ({Z,40)40)) (104)
= .. (105)
=7+ ({2211} - 11224710 (106)
= Z+n{Z v (107)

o 1 . . . -y
Les générateurs {7&9,7—[ p} font souvent apparaitre des contraintes secondaires de premiére classe
comme générateurs de transformations de jauge.

1. Soit Z une coordonnées quelconque, I'opérateur ﬁé}f agit sur Z de la sorte : *Aygil))(Z) ={Z, 78))}
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On peut alors penser qu’une contrainte de premiére classe, quelqu’elle soit, est génératrice de
transformations symeétrie de jauge. La conjecture de Dirac postule d’ailleurs que toutes les D contraintes
de premiére classe, notées 7z, sont des générateurs de transformations de jauge. Cela n’est en fait pas
toujours vrai, mais il se trouve que les systémes physiquement intéressants vérifient cette conjecture.
Dans ce cas (dans le cas ou la conjecture est vérifiée), 'évolution du systéme calculée a partir de
I’hamiltonien total Hr est équivalente & celle calculée & partir de ce qu’on appelle I’hamiltonien étendu
Hg :

Hp=Hp+ My =Hr+ XY 1=1,.,D (108)

s parcourant toutes les contraintes secondaires de premiére classe.
7.3 Exemples : systémes contredisant la conjecture de Dirac
e Voici un systéme qui ne vérifie pas la conjecture de Dirac :
o1
L= (zz+ JY? ) (109)

On peut montrer que les contraintes secondaires de premiére classe ne sont pas des générateurs de
transformations de jauge; seule la contrainte primaire de premiére classe (il s’agit de qbgl) =py)
est un tel générateur, et on a ainsi que la variable conjuguée a p,, cad y, suit une évolution arbi-
traire. Dés lors, les solutions du mouvement sont différentes si on emploie I’hamiltonien étendu
plutdt que ’hamiltonien total : ces deux hamiltoniens ne sont pas équivalents.

e Un autre hamiltonien qui ne vérifie pas la conjecture de Dirac est le suivant :
Hel(gs 11, v, Ay 9y Ty T mx) = X + € Hp? + 7 + gy (110)

ol p est la variable conjuguée & q, et m; est la variable conjuguée & 7.

Les contraintes primaires sont :

o1 =m~0 (111)
po=m, =0 (112)
Et donc
Hy = e g* + e Hp? + 12 + qm, + ulmy + u?m, (113)
De ces contraintes primaires, on trouve les contraintes secondaires :
{mx Hr} = g°e* = g3 =g~ 0 (114)
{mu, Het = e Hp” = ¢ =p~0 (115)

Ces nouvelles contraintes fournissent elles-mémes une contrainte tertiaire :
{¢, Hr} =2pe™ = p=~0 (rien de neuf) (116)
{p, Hr} =2qe* + 71, = ¢5 =7, ~ 0 (117)

Comme {m,,Hr} =0, il n’y a pas de contraintes d’ordre supérieur a 3.

On a que ¢1, @2 et ¢5 sont des contraintes de premiére classe tandis que ¢3 et ¢4 sont de seconde
classe et ne sont donc pas des générateurs de transformations de jauge.

Aussi, ¢1 et ¢ sont des générateurs de transformations de jauge, mais leur crochet de Poisson
avec hamiltonien de premiére classe Hp = e*¢? + e Hp? + 72+ qm, +uimy + ﬁzﬂ'u ne permet
pas de dire que ¢5 en est un :
{mn, Hp}t =0 (118)
{m,, Hp} = e Hp? (119)
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Ici, ¢5 n’est pas un générateur de transformations de jauge bien que cette contrainte soit de
premiére classe. Plus tard, nous verrons les critéres exactes que doit avoir une quantité Q pour
étre générateur de symétrie. La conjecture de Dirac n’est pas vérifiée dans ce cas et la solution
générale du systéme obtenue avec I'hamiltonien étendu Hp = Hp + A1 + AN2¢9 + NS¢ fournit
davantage de fonctions arbitraires que la solution obtenue via ’hamiltonien total. De fait, dans les
équations du mouvement obtenu via H g, on aurait ’'équation supplémentaire v = —2m, — q — \°
rendant v(t) arbitraire.

8 Contraintes de seconde classe

8.1 Crochet de Dirac

Supposons que nous ayons trouvé toutes les M + K contraintes ¢4 du systéme. Parmi elles, on en
compte M qui sont de premiére classe, on les note vz, et P qui sont de seconde classe, on les note .
Les M contraintes de premiére classe s’obtiennent a partir des M solutions U("}) du systéme d’équations
linéaires homogénes :

U, ¢p} =<0 (120)
De ces solutions, on forme
3= Ut (121)
Cette décomposition n’est pas unique et il est possible de redéfinir les contraintes :
v = Afvs+ S xuxe  det(A) #0 (122)
Xu = Bixu+ Rjyr  det(B) #0 (123)

Les contraintes de premiére classe restent de premiére classe et celles de seconde classe restent de
seconde classe en effectuant cette redéfinition.

Un objet fondamental & I’étude de la variété des contraintes de seconde classe est la matrice P x P
C' antisymétrique de composantes

Cuw = {Xu:Xv} (124)

Cette matrice est inversible, sinon il existerait une nouvelle contrainte dans le systéme (or on
suppose qu’on a trouvé toutes les contraintes). Une conséquence des propriétés d’inversibilité et d’an-
tisymétrie est que le nombre de contraintes de seconde classe doit étre pair.En effet, :

det(C) = det(C?) = (=1)Pdet(C) (125)

Etant donné que det(C) # 0 (car inversibilité), il est nécessaire que (—1)F = 1, autrement dit, P
est pair.

Soit ¥ la surface engendrée par les contraintes x,. Cette surface est de dimension 25 = 2N — P.

Les 25 coordonnées sur X seront notées z% et les équations qui définissent la surface ¥ s’écrivent

paramétriquement comme :
=84 2t = (¢" pp) (126)

Elles vérifient :
Yu[SA ()] =0 (127)

Les conditions de régularités étant supposées satisfaites, un vecteur de composantes XA est tangent

A la surface si :
IXu

0z4

En dérivant par rapport & =% (127), on trouve que les composantes de ces vecteurs tangents sont :

XA

~ 0 (128)

B A
XA _ s xXe

= 5 (129)
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En se rappelant la 2-forme symplectique w
0 6A,B—N
WAB <_5AN7B . (130)

et en restreignant I'action de cette 2-forme aux vecteurs tangents a f], on peut construire la 2-forme
induite o :

0S4 0SB g
Ces relatons (131) définissant o sont équivalentes a
XX, = XAXBwyp (132)

Cette 2-forme o permet de définir le crochet de Poisson induit {, }. de deux fonctions f et g définies

sur i . af a
_ 79 ab

(133)

La 2-forme o a été construite & partir du crochet de Poisson sur I'espace des phases et des équations
qui définissent ¥. Soit alors F' et G deux fonctions qui se restreignent a f et g respectivement sur la
surface ¥, il est possible de directement calculer la valeur du crochet (133) a partir de la donnée de
représentants des fonctions F' et G au voisinage de 3 :

OF 8G 0S4 0S8 ,

{fi0h = 5255 g0 9,0 (134)
On définit alors le tenseur antisymétrique
254 08B
AB _ b
qu’on exprime en coordonnées zA.
Ce tenseur vérifie les relations suivantes :
95¢ 084
AB _
A WBC G o = 5o (136)
0
AAB afg =0 (137)
La premiére relation nous permettant d’établir :
0
AAB _ 1 AB | pAv 82%7“”03 (138)
ce qui, au moyen de la deuxiéme relation de (137), nous meéne 4 :
0
w5 = —P* ) = —PMCu (139)
Et donc :
AAB — wAB o wAD aXU (C—l)uv ax’U ’UJCB (140)

02D 02¢
Cela nous permet d’introduire sur ’espace des phases un nouveau crochet : le crochet de Dirac

{7}D:

{F,G}p = %%MB (141)
= {F,G} = {F, xu}(C™") " {xv, G} (142)

Ce crochet vérifie bien toutes les propriétés qu’on attend d’un crochet : antisymétrie, bilinéarité,
vérifie la régle de Leibniz, l'identité de Jacobi,...

Le crochet de Dirac posséde des propriétes intéressantes :
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1. Si F est de premiére classe et G quelconque :
{F,G}p <{F,G} (143)
2. Le crochet s’annule sur les contraintes de seconde classe :
{F,Xu}p =0 (144)

~ signifiant « égal sur la surface des contraintes de seconde classe de dimension 2N — P »

Si I'on utilise le crochet de Dirac plutot que le crochet de Poisson, on peut, en chaque point 24
remplacer les contraintes de seconde classe Xu(zA) par la valeur XU(ZA). Ainsi, sur X, on peut les poser
égales & zéro avant d’entamer le calcul des crochets de Dirac.

8.2 Exemple

Considérons a nouveau 'hamiltonien (110). La surface des contraintes secondaires est définie par
les deux contraintes

P3=q~0 ¢s=p~0 (145)
La matrice C correspondant a ces contraintes est :
_ (0 I\ _
C = <_1 0) =—C (146)

L’espace des phases étant de huit dimensions (composé des variables ¢, u, v, Ay D,y Ty Ty ), la sur-
face engendrée par les contraintes est, elle, de six dimensions et les coordonnées de X sont p, v, A, 7, 7, 7).
On a les relations pour S4(z%) :

St=0;8%=p; S3=v;5'=),;8=0; 56:7TM; ST=m,: 8% =m, (147)

On construit la 2-forme o via la relation (131) :

0 0 0O 1 00
0 0 0 010
_ sAsB. AB 10 0 0 001
Oap = 04 0p w7 =g = 1 0 0 00 0 (148)
0 -1 0 000
0 0 -1000
Il en résulte le crochet de Poisson induit (133) :
of dg  Of 0g Of 0g 09 Of 909 Of  0Og Of
{fLo} =5+ 5= + s s A - s (149)
opom, Ovom, OXOmy Oudm, Ovom, OXOmy
Ayant trouvé o, on peut déterminer le tenseur A (135) :
0 0 0 0O 0 0 0 O
0 O 0 0O 01 00
0 0 0 0O 0 0 1 0
A AB o Jo o 0o 0 0001
AP =200 0" = A = 00 0 0 0000 (150)
0 -1 0 0O 0 0 0 O
0O 0 -1 0 0 0 O0O0
0 O 0 -1 0 0 0 O

Le crochet de Dirac est ainsi défini :

OF G  OF 0G OF 0G  0G OF 0G OF  0G OF
- Nl M st sl (151)

F -7 bl
G = om, T o om T oxam  ouom,  ovom,  Ox0m

Et comme (C~1)12 = —(C~1)2! = —1, la relation (142) est vérifice.
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9 Transformation de jauge de ’action

9.1 Reégles de transformations afin de rendre ’action étendue invariante et déter-
miner les transformations de symétrie de jauge

En considérant une variation par rapport a toutes les variables ¢®, pa, AT, u? (1 < p < P) de I’action
étendue, on peut obtenir les équations du mouvement de la mécanique diracienne.

L’action étendue est
Sg = /(paqa —Hp — )\I’y[ —uPxp)dt (152)

Imposons a cette action d’étre 1nvar1ante modulo des termes de bords, lors d’une transformation
de jauge infinitésimale engendrée par e!v;. Les contraintes de premiére classe 47 sont supposées ne
dépendre que des ¢* et des p, tandis que les fonctions e/ peuvent dépendre du temps, des ¢* et des pq,
(mais pas de leur dérivée) et des multiplicateurs A et u? ainsi que de leurs dérivées niéme par rapport
au temps.

A une dérivée totale par rapport au temps prés, on doit avoir :

SN y1 + duPxp = 0(pag™) — 0Hp — Moy — uPdx, (153)
Avec
e I - d o ]
5jauge(paq ) = {pa75 ’Yl}q +pa%{q € ’YI} (154)
d 8(5I’H) De 1
= — o — — 1
dt( Opa ’V>+ o ! (155)
o D 9 o 10 b 0 0
LAY A — .. — 156
A UGN o T 5w (136)
Les autres variations infinitésimales de jauge s’écrivent de facon générale (voir (123)) :
Hp ={Hp,e'v1} =" (Vv + V" Xmxn) + {Hp,e” 1y (157)
51 = {vr. e} = €M (Clvr + O xmxn + {7, 71110 (158)
5xp = {xp- €'} = e/ (DS + ENfxm) + {e7, xp s (159)

En substituant dans (153), on déduit les régles de transformations des multiplicateurs assurant
I'invariance de l'action étendue :

De!
OX' = 6i +{e", He +uPxp} — e’ (V] + N<Cley + ™Dy, ) (160)
5Up = —EJ(V}WPXWL + )\KCmPKJXm + umEglJ) (161)

L’action totale s’obtient en fixant & zéro certaines des fonctions arbitraires de jauge de fagon & ne
sommer que sur les contraintes primaires. Cela ne restreint pas la dynamique car on demande que les
contraintes primaires restent vérifiées au cours du temps, cela faisant apparaitre les contraintes (secon-
daires) pour lesquelles on n’a plus de multiplicateurs. Pour obtenir les transformations de jauge laissant
la dynamique invariante, il faut, avec les équations précédentes, restreindre les fonctions arbitraires de
sorte qu’on préserve les conditions imposées aux fonctions de jauge, ¢’est-a-dire SA4 = du™ = 0 lorsque
les indices A et m ne correspondent pas & une contrainte primaire.

9.2 Exemple
Reprenons le lagrangien de I’exemple introductif
1 \2
L=3—9) (162)
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On rappelle la solution générale du mouvement, obtenue d’abord grace aux équations d’Euler-
Lagrange :

x(t) = Ft) y(t)=F(1) (163)
Passons au formalisme hamiltonien et regardons en premier lieu la transformation de Legendre :
oL oL .
pm:£:O et py:a—y:y—x (164)

Cela nous permet de déduire la contrainte primaire ¢! = p, et de construire ’hamiltonien canonique
ainsi que ’hamiltonien total :

1 1
He=gpy +pyr Hr = o0, +py7 + X' (165)
De ’hamiltonien total, on déduit une contrainte secondaire :

{pes Hr} = py = ¢* =py <0 (166)
Hr ne dépendant pas de y, il n’y a pas d’autre contrainte. Les deux contraintes du systéme sont
de premiére classe.
Les équations hamiltoniennes du mouvement sont :
rT=A"=<XN" ; y=pytr=xz (167)
Pr=-Dy =<0 ; p,=0x0 (168)

On retrouve comme solutions des relations en accord avec (163) :

ety =F@1t) ; yt)=F@t) ; N¥=F@t) ; po=0; p,=0 (169)
L’hamiltonien étendu s’obtient en considérant toutes les contraintes :
1
Hp = 5y + pyz + Ape + Npy (170)

Les équations qu’il fournit sont :

=X ; y=p,+az+ N (171)
Pz=-Py ; Py=0 (172)
Pe=0 ;5 py=0 (173)
dont les solutions font apparaitre une seconde fonction arbitraire G(t) :
y=F(); W =G(t); 2 =F(t) = G(t) ; \" = F(t) =G(t) s pr =05 p, =0 (174)
La transformation de jauge la plus générale s’écrit :
G =¢e"ps +eYpy (175)

T et &Y étant des fonctions arbitraires de toutes les variables et de leurs dérivées sauf celles de
x,Y, Pz, py- Les transformations de jauge sont :

bz = {z,G} = gsz + 6% + g;ipy (176)
0y = g;sz +e+ g;zpy (177)
Ops = —%px - %py (178)
dpy = —i)g;px - %&jpy (179)
<W:%f+%€:A“+%j(py+fﬁ+Ay)—gzpy (180)
SNV = %Jr %‘i/\x+%€:(py+m+/\y) - S;Zpy—ex (181)
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Si 'on veut obtenir les formules analogues dans le cadre du formalisme lagrangien, il faut poser :
NW=0;0A=0;p,=0;py=y—a; \'=ux (182)
La fonction €¥ devient alors €¥(t, x, y, ps, py, A, );i, /\Z) =e¥(t,z,y, e, Dy (¥, ), ¥ (2), )\x(m yeer) =
EY(t,x,y,z,%,...,y). La fonction €* devient, elle, E* déterminé par (181) et par le fait que 6\Y =0 :

_ Dev  0ev | OeY oeY

BT = o vy ’
ot Tar N Ty P E N 5P s

(183)

On a ce qu’il faut pour trouver les transformations infinitésimales de jauge des variables x et y
dans le formalisme lagrangien :

dEY ... 0eY
0= U g s (184)
Y
Sy = BY + (i) — ) (185)

87py mod(182)

Le premier terme de chacune de ces deux transformations correspond bien & la transformation déja
obtenue dz = f = Jy, tandis que les seconds termes sont proportionnels aux équations du mouvement ;
ce sont des transformations de jauge triviales et on peut les ignorer. Les secondes termes apportent
d’ailleurs une variation du lagrangien qui est une dérivée par rapport au temps :

oL

R N O Ok (156)

B % B 87]% mod(182)

10 Charges de Noether

10.1 Symétries dans le formalisme lagrangien

Rappelons que, dans le formalisme lagrangien, une symétrie correspond & un changement de va-
riables ¢ — q/o‘ qui laisse le lagrangien invariant a une dérivée totale par rapport au temps prés :

. ) dK
L(qlv qlat) = L(Qv q, t) + ﬁ (187)

L., . . . . 0L(q,q4,t
la dérivée d’Fuler-Lagrange étant covariante sous changement de variables, si %
OL(q',q't)

g = 0.

= 0, alors

A une transformation de symétrie infinitésimale ¢* — ¢ + 0¢®(q,q,t), on définit 0K (q,q,t) la

quantité telle que 6L = dg—f( a laquelle correspond la charge de Noether, ou intégrale premiére du

mouvement, voire constante du mouvement :

Q(q,4,t) = 0¢"(q,4,t)palq, ¢, t) — 0K(q, ¢, 1) (188)

A une symétrie globale :

e sous translation des positions correspond la conservation du moment p, (et ¢“ est une variable
cyclique).

e sous translation dans le temps correspond la conservation de I’énergie de Noether (et le temps
est une variable cyclique).

e sous rotation correspond la conservation du moments angulaire.

La suite de cette section consiste a déterminer les charges de Noether dans un systéme dont la
description hamiltonienne présente des contraintes.
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10.2 Charges et contraintes

Tout le long de cette sous-section, nous allons travailler avec les variables indépendantes (q, pa, ¢™, t)
et les quantités fonctions de ces variables seront surmontées d’un chapeau.

) aL(q7 q‘? t) fny fonl (073
= DY) =5, = : — D, 189
o 0 G9=h (g.pa i ) Pa = Pa Dm = fm (q Pa ) ( )
Aa . Ay a . Y . 5
6q (4%, pa,q™ 1) := 0¢°(¢", h*(q, Pa, 4™, 1), 4™, 1) (190)
0K (q,pasd™,t) == 6K (q", h%(q, pas 4™, 1), 4™, t) (191)

Une relation utile dans 'espace des configurations est la suivante :

5<8L(q,q,t)):35K 9dq” OL a5qﬁ[d oL aL} (192)

dge dg® g~ AP T 0~ ﬁ(W) ¢

Cette derniére permet de définir la variation du moment p,, et de passer de la premiére a la deuxiéme
ligne dans le calcul ci-dessous;

m — _ 1
(5pa(Q7paa q 7t) [5< g > 0™ 5q5} G8=hé(q,pa,q™ ) ( 93)
IOK  36q° OL
_ _ 99¢” oL 194
[aqa dq> ¢P } G4=h%(q,pa,4™t) (184

Cette définition de la variation de p, est judicieusement choisie du fait qu’elle n’est pas fonction
t” aLing(Lt)

; _est décrite comme en (192) si ce n’est que

(j&:h“

des accélérations. La variation du "momen

12 - . - N . PN L 7
le terme contenant des accélérations doit disparaitre. ¢’est pourquoi on soustrait a 5(%) o
qa:ha

96¢° [d (0L _ oL
le terme 55 [dt(aqﬁ) 6qﬁ} P

La charge de Noether est, ici :

~

Q(qaapaa t) = 52]&]/)\04 - 5/]\{ (195)

Cette quantité n’est effectivement pas fonction des ¢™. Cela peut se montrer en utilisant 'égalité

K _06¢°
—|. =D q o (196)
aqa Gé=ha aqa Go=ha
qui nous permet de dire que la dérivée partielle de @ par rapport a ¢ est nulle.
On trouve également les égalités suivantes :
0Q ~a  ~mOfm
=dq +96 197
Opa 1 1 Opa ( )
0Q <~ ~mfm
— =-4 0q —— 198
9 Pat00 5o (198)

On remarque que la fonction f,, apparait dans ces deux relations. Or, on voudrait que la charge de
Noether puisse générer les transformations de symétrie 5\qa et (5Apa, et fm, ne s’annule pas sur la surface
des contraintes. Pour pouvoir corriger le probleme, on introduit la charge de Noether totale qui est
fonction de (pa,q®, 4™, ).
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10.3 Charges de Noether totales
10.3.1 Avec des variables de moments, positions et vitesses

Les variables indépendantes sont désormais (pa, ¢®, ™, t). Toute fonction qui sera dépendante de
ces variables sera surmontée d’un tilde.

¢* = *(¢", pa, " 1) (199)

__ OL(q,4,t _ _ _
o = —————— = Pa = Pa = Pa m — Jm aaat 200
p e P Pa=Pa Pm = fm(q Pa,t) (200)
0K (¢°,par d™,1) = 6K (q,0,t) = 0K (g, pa, 0™, 1) (201)
04" (4%, pas ™) = 64 (g, 7, )= 4" (¢, pa, 0™, 1) (202)
Sba(qﬁvpa’q'mvt) = pa(q’p t) (203)

La charge de Noether totale est définie par :

Qr(p,a,d™,1) = 4" pa — 0K (¢”, pa, 4™, 1) (204)
= Q(q,Pa,t) + 04" (¢, a, 4™, 1) (P — fn(q: Past)) (205)

Les moments p,, n’ont pas été substitués par les fonctions f,, car les (5~qa sont multipliés par les
moments p, et non p,. L’apparition des f,, est die au fait que @) est exprimé en fonction des variables

(¢, Part)-
Les dérivées partielles de QT ont une expression intéressante :

{Qr,4°} = =04~ — {a*, 64" }(pm — fm(Pas ;1)) (206)
{QTapa} = _(5pa {pav 6q }( (pm%t)) (207)

Elles se simplifient sur la surface des contraintes primaires V :

0Qr

aQr _ -
" Opa op

_5~ ) {QT7pa}: aqa ~ o

{Qr,q"} =

(208)

Ces relations (208) peuvent s’interpréter de la sorte : les charges de Noether totales générent les
transformations de symétrie infinitésimales sur V et sur la surface du mouvement.

Nous allons montrer que la surface des contraintes primaires est préservée sous transformations de
symeétrie infinitésimales sur la surface du mouvement. Autrement dit, on va montrer que {Q1, ¢ (¢, pa,t)} =
02. On a en effet que, en s’aidant de la relation (194) :

~ ~ Ofm =a  Ofm =
m\4Y Pa> N —0Pp, a 2
{Qr. ¢m(d,past)} = —0pp, + ¢ o + 90, op (209)
OL adqﬁ oL Ofm =a  Ofm oL d0q° SL
—|6( == el 21
[5<8q'm> g (5q5} Oq™ %4 Opa [5<8q'a) 9¢* 6q° } (210)
Or nous avons 'égalité suivante :
Ofm za  Ofm ., OL
m\4, Pa = A 211
B nla,part) = 5 500" + 5 0 () (211)
Et comme % = fm(q,q,t), on obtient finalement :
~ oL 26¢°  96¢° Ofm
m\4 Pa, ~ —0Jm m - . . = 212

2. La variation d’une fonction F sous transformation est, vu (208), 2 aq 5q + 5o or —0pa A {QT, F}
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10.3.2 Dans ’espace des phases

Jusqu’ici, les charges de Noether ne sont pas pleinement définies dans ’espace des phases, ne sont
pas pleinement exprimeées avec les variables de positions et moments. Toutefois, on sait que I'on peut
résoudre les contraintes et déterminer les u"(p, g, t), c’est-a-dire que les vitesses ¢ sont complétement
déterminées dans I’espace des phases avec, on le rappelle, des fonctions arbitraires A(t). En substituant
les ¢" par la solution v (p, q,t) (76) dans les transformations infinitésimales (202)-(203), ces derniéres
deviennent des fonctions de (g, p).

AG*(p, q,t) == 6q" (¢ Par @™ (P, 4, 1), 1) (213)
Apa(p,q,t) := 0pa (¢, Pa, @™ (D¢, 1), ) (214)
Qr(p,q,t) = Qr(q,pa, 4™ (P, 4, 1), t) = A¢"pa — 6K (q,Pa, 4™ (P, ¢, 1), 1) (215)

Les crochets de Qp avec les variables de ’espace des phases sont :

{Qr,¢*} = —A¢* — {¢®, A"} (pm — frm(Pas a5 1)) (216)
{QTapoc} = _Apa {pom Aqm}( (pcu q, t)) (217)

L’hamiltonien totale étant Hp := 9“py — L(q,,t), on a, sur la surface des contraintes primaires

VY
8
{Qr, Hr} = {Qr,0%}pa — 0% Apy + Aq —{Qr,?

(218)

OL(q,0,t)
0

. N 0L(q,0,t sz N
Toutefois, comme p, — 5 correspond a la somme sur a de pg — %, quantité nulle, et a

la somme sur m de p,, — % qui s’annule sur la surface des contraintes, on obtient finalement :
~Q (64 aL
{QT, HT} ~ — Apa + Aq 670‘ (219)
09K (q,0,t)  IL(q,7,1) 35q5(q,@7t)> OL(q,0,t)
R — Agt————= 220
( oq“ o8 g +2q 9q° (220)
06K  OL 00g“
~ - 221
ot ov® Ot (221)
00K 04q”
_ o 222
o ot ' (222)
Cette égalité faible montre alors que :
0
{Qr, Hr} + —— QT ~ 0 (223)

Cela signifie que, en plus d’étre nulle sur la surface du mouvement, la dérivée totale de la charge
Q7 est également nulle sur la surface des contraintes. On peut ainsi dire que {Qr, Hr} + dQT est une
combinaison linéaire des contraintes primaires. En d’autres termes, la charge de Noether totale génére
une transformation qui préserve 'hamiltonien sur la surface des contraintes.

oy O
AHr = o O (224)
_OHr 0Qr  OHr 0Qr
~ aqa apa 8pa aqa (225)
~{Qr, Hr} (226)
_0Qr
e (227)

QT préserve aussi les contraintes primaires sur la surface du mouvement. Utilisons le symbole =2
signifiant que 1’égalité se fait sur la trajectoire naturelle tout en rappelant qu’elle s’effectue également
modulo les conditions définissant la surface des contraintes primaires.

{Qr, ¢m(q,past)} =0 (228)
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Etant donné que la dérivée totale par rapport au temps dans 'espace des phases correspond a
"Vopérateur" {, Hr} + % sur la surface du mouvement, [’évolution dans le temps de (228) est nulle
sur la surface du mouvement :

d 0
a{Q'IU ¢m(Q7pa7 t)} = {{QT7 ¢m(QJpa7 t)}a HT} + E{Q']U ¢m<vaa7 t)} =0 (229)
Les contraintes secondaires peuvent apparaitre dans cette relation. Ces derniéres sont dévoilées
lorsque l'on calcule {¢,,, Hr} + dg;g”, terme que 'on peut faire apparaitre dans (229) en utilisant
I'identité de Jacobi et la régle de Leibniz :
OPm,
{QTv {¢m7 %T} + % - _{HTv {QT? d)m}} - {(z)ma {QT? HT}} + {QT: 8t¢m} (230)

= {{QTa ¢m}a HT} + 8t{QT7 QbWL} + {d)m? {QTv HT} + 8tQT} (231)

Dong, la relation (229) devient :
d
%{QTa ¢m(Q>paa t)} = {QT7 {¢m7 HT} + atqu} - {¢m7 {QT? HT} + atQT} (232>

0 {Qr mla.pa 1} 20 (233

Des lors, si {Qr, Hr} + 0:Qr est une contrainte de premiére classe, alors on conclut que, non seule-
ment les contraintes primaires sont conservées "on-shell", mais également les contraintes secondaires
le sont. Dans ce cas, il est immédiat, via (232), que Q7 est de premiére classe "on-shell".

11 Symétries dans un systéme & hamiltonien total

Jusqu’ici, les équations/relations dérivées, notamment les propriétés des charges de Noether, tirent
leur origine d’une symétrie dans un systéme lagrangien. On souhaiterait alors discuter de symétrie
obtenue directement dans un systéme hamiltonien, ce sans se référer a un systéme lagrangien. Dans
cette section, on va introduire les variables ™ (1 < M < 2N) pour désigner les positions et moments ;
atN — p,. Définissons la matrice JYN = {zM 2N} .

(J)MN <_§a/3 535) (234)

qui permet d’écrire de facon compacte {F, G} = Oy FJMNOnNG et donc en particulier {zM, F} =
JMNONE.

x*=q%et x

11.1 Deéfinition de symétrie dans ’espace des phases

Une symétrie dans un systéme hamiltonien total est définie comme étant une transformation dans
I’espace des phases :

e qui ne dépend que des variables de ’espace des phases (et pas des dérivées de ces variables) ;
™ — M (3 ¢) (235)
e qui préserve la forme symplectique, ¢’est-a-dire JMN = {x/M(x, t), 2N (x, t)}.

e qui préserve les solutions physiques du mouvement ainsi que les contraintes. Autrement dit, soit
un hamiltonien total Hp(z,t; A\, w) comme en (83), si z:(¢) est solution de I’équation

M = JMNONHp (8 N, w) (236)
alors ' M (z,t) doit étre solution de 1’équation
2 = Ona™MiN 4 g™ = TN O Hp(a! 1 N ) (237)

~ . . N N ) / IN
pour le méme hamiltonien & un changement des paramétres \'(¢) et w™™ (¢) prés.
Ensuite, si la symétrie préserve les contraintes sur S et sur la surface du mouvement, alors :

ACRIENACRILICN) (238)
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Si la transformation est infinitésimale, (' = edx 4 x), cette derniére devant obéir a la condition de
préservation de la forme symplectique, on a que :

Ty On(82) = Tyt O (62") (239)

Ce qui signifie que la 1-forme dzyr = J ];IIL@N((SQ:L ) est fermée et donc exacte sous les hypothéses du
Lemme de Poincaré. En effet on trouve bien que d(dzy) = Jy/5 On (621)dx™ AdaxN = Q et, par (239),
les indices de sommation dans les composantes de la 2-forme permuttent, JJQIL@N(M:L )dxM AdaN =
J&i@N[(éxL)dxM AdxN = —Q, ce qui implique que Q = 0 et donc la 1-forme est bien fermée.

Dés lors, par le lemme de Poincarré, il existe une fonction génératrice Qp(x) de I'espace des phases
telle que :

oxM = oM Qu(z) = {2M, Qu(x)} (240)
Toute transformation de la sorte (ot d2 correspond au "gradient" d’une fonction) laisse la forme
symplectique invariante.

11.2 Transformation canonique dans I’espace des phases

Une transformation de symétrie se référe & un hamiltonien total donné. Dans le cas de "trans-
formations canoniques", cet hamiltonien n’est pas spécifié. On définit une transformation canonique
xr — o' (x,t) comme étant une transformation de coordonnées dans I’espace des phases telle que pour
tout hamiltonien total Hyp(z,t), il doit exister un autre hamiltonien total H'p(2',t) vérifiant :

M = iV oya™ 4 8’ M = NI H (o 1) (24)

Cette condition est équivalente &
INE gy (2, )OnHr (2, t) + 0™ = MV H 7 (2 1) (242)
(™ 2NVYOHr(2,t) + ™ = TMNONH 1 (2 ) t) (243)

Pour un hamiltonien total arbitraire et en notant 2y, = J];IIN:C/ N la condition d’intégrabilité meéne

Nl 2BV My + {2y, /530000 Hr + O™ Ok sy (244)
= Oy, 25V OhHr + {2y, 2B YO ONH + O™ O sy (245)

Puisque cela doit étre vérifie pour des hamiltonien Hp(z,t) arbitraires, on déduit trois relations
indépendantes :

Oy {aly, T YO M = O {ahyy, «™ YO Hr (246)
{aly, T} O Hr = {alyy, 2 YO O Hr (247)
oyl ogdxly = Oyal ooz, (248)

Des choix différents d’hamiltonien nous permettent d’aboutir & certaines conclusions.

Imaginons le choix Hr = 2/F2'?. la relation (247) nous indique que {zy, 2%} est proportionnel a
5]{? et donc que

(P NY = fa,6)JMN (249)
Le choix Hr = 2'F, nous méne & dire, via (246), que f(x,t) est indépendant de x :
Om f(z,t) =0 (250)

La derniére relation (248) nous dit, elle, qu’il existe une fonction w(z’,t) satisfaisant o', =
Oy (2!, t). Avec cela, on trouve alors que f(x,t) est indépendante du temps. Finalement, cette fonc-
tion n’est autre qu’une constante. En d’autres termes, les transformations canoniques laissent la forme
symplectique invariante & une constante prés. En "normalisant", il est aisé de rendre la forme sym-
plectique invariante. Dés lors, les transformations canoniques conservent {2/, z/N} = JMN,
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11.3 Critéres pour étre générateurs de symeétrie
Nous allons regarder les propriétés de la fonction génératrice de symétrie Qg de (240). Cette der-
niére doit respecter les conditions imposées par la définition de transformation de symétrie.
Regardons une transformation infinitésimale qui transforme I’hamiltonien total de la sorte :

OMp o v OHr o\, OHr
83:M§x + N oA +8whh’

Le calcul de {62™  Hr} + 0,(62M) donne, quelque soit 'hamiltonien :

Hp — Hy + Suwh? (251)

(6a™ M} + 0,(62™) = salop{a™ He} + {a™, 4 VoN + %d)hgbh/éwhh/} (252)

Ou les indices h et i/ parcourent toutes les contraintes. Il s’agit d’une équation aux dérivées partielles
dont les inconnues sont les 2™ (x,t). La solution générale de cette équation peut donner I’ensemble
des symétries d’un systéme hamiltonien donné.

En outre :

seMopron = {™, QuYondn = {Qu, dn} =0 (253)

Et donc Qp est de premiére classe sur la surface du mouvement.
On réécrit 1’équation (252) sous la forme :

(Y, Qub Hr) = (@i fa Hr b} + (e 20N + Sononsu™ 00} (250

En appliquant I’identité de Jacobi, on trouve alors :
o1 /
(e {Qu, Hr} +01Qn — 7N — Jondndu™'y =0 vt (255)

Cela implique que 1’élément de droite dans le crochet est égale & une fonction arbitraire du temps.
5,0, —~Wgyi _ L Swh —
{Qu,Hr}+0:Qu —; 2¢h¢>h' w' = f(t) (256)

En redéfinissant le générateur QO — Qp + ftto dt’ f(t'), redéfinition permise car elle n’apporte pas

de modification & la transformation de symétrie s = {zM Qg}, on peut se débarrasser de cette
fonction arbitraire.

On conclut alors que la condition nécessaire et suffisante pour qu'une quantité de premiére classe
"on-shell" Qp(q,p,t) soit un générateur de symétrie d’un certain hamiltonien total Hp(p, q,t; A, w)
est :

o1 /
{Qu, e} +0iQu = 1N + Jononou™ (257)

11.3.1 Charges de Noether et constantes comme générateurs

La condition nécessaire et suffisante dérivée ci-dessus dictant le caractére ou non de symétrie d’une
quantité Qg permet de confirmer que, en particulier, les charges de Noether () dans un systéme sans
contraintes sont des générateurs de symétrie globale. En effet, dans ce cas, il n’y a pas de symétrie
de jauge, ce qui implique 6\ = 0 = 6whh/, et ) étant une intégrale premiére du mouvement, on a
immédiatement {Q,H} + 0;Q = 0. De fagon générale, toute quantité qui est de premiére classe et qui
est conservée sur la surface du mouvement est un générateur de symétrie. En effet, affirmer qu’une
quantité est constante sur les équations du mouvements revient & dire que le crochet de cette quantité
avec ’hamiltonien additionné de sa dérivée partielle par rapport au temps est égale (et pas égale mo-
dulo le mouvement) a zéro.

Les charges totales de Noether, elles, sont des générateurs de symétrie dans un systéme & contraintes
a la condition que {Qr, Hr} + 0:Q est une contrainte de premiére classe.
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11.3.2 Dans le cas statique

Dans le cas ot hamiltoniens de premiére classe et contraintes ne dépendent pas explicitement du
temps (’hamiltonien total reste dépendant du temps car les fonctions de jauge sont des fonctions du
temps), ’hamiltonien total est lui-méme un générateur de symétrie étant donné que

dHr OHr _

Si, en plus, il n’y a aucune contrainte secondaire de premiére classe dans le systéme, autrement dit
si toutes les contraintes de premiéres classe sont des combinaisons linéaires des contraintes primaires

(1)

de premiére classe, alors Qp = €'(t)y, ’ est générateur de symétrie de jauge :

(Qu, Hr} + 0,Qn = 4V TIEH (1) + 1)y (259)

(1)

Autrement, si(t)w(,l) est aussi générateur de symeétrie de jauge si le crochet de 4, avec I’hamiltonien
est quadratique en les contraintes ¢y, :

1 " ;
{Qu, Hr} +0:Qu = Sondw Tl (1) + ()" (260)

Plus généralement, sz(t)'yi( ) est générateur de symétrie si le crochet de ces contraintes primaires
de premiére classe avec Hp est la somme d’un terme linéaire en les contraintes primaires de premiére

classe et d'un terme quadratique en les contraintes primaires et/ou secondaires ¢pop:.

11.3.3 Exemple

Soit le lagrangien L(x,y,,9y) = %ey:bZ. La contrainte primaire est ¢ = py, elle est de premiére
classe. Les équations du mouvement indiquent que x(t) = xg, et donc p, n’est pas générateur de sy-
métrie de jauge.

L’hamiltonien canonique de ce systéme est H, = e ¥p2 et le total est Hy = se ¥ (pz)? + pyA(t).
Gréace a I’hamiltonien, on trouve la seconde et derniére contrainte : il s’agit de ¢o = p, qui est de
premiére classe. On fait ainsi face & un contre-exemple de la conjecture de Dirac car on a une contrainte
de premiére classe p, qui ne génére pas de symétrie de jauge.

On a toutefois que :

{py, Hr} = %e*y(pw)2 (261)

{py, Hr} correspond bien & une forme quadratique en les contraintes de premiére classe. Donc
Qp = €(t)py est génératrice de transformation de symétrie mais cette quantité ne génére qu’une trans-
lation arbitraire de la variable de jauge pure y :{y, Qn} = €.

On peut aussi reprendre "hamiltonien (113). Remarquons qu’il n’existe pas de lagrangien qui per-
mette de fournir cet hamiltonien.

I’hamiltonien lui-méme est générateur de symétrie puisque OyHr = 0. Des transformations de
symétrie (globale) sont éxM = {2™ Hr}. Cela témoigne de la conservation de l'énergie; dans un
systéme lagrangien, la symétrie serait une symétrie sous translation dans le temps. Les contraintes
primaires de premiére classe sont 3 = my et 72 = m,. Un générateur de symétrie de jauge est alors
G=clm + 5271#; il génére des transformations de jauge simples :

A={\G}=¢e' ; {uG}=¢ (262)
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Les autres transformations sont nulles.

La contrainte secondaire de premiére classe v3 = m, ne génére pas de symétrie de jauge car 0H =
{m,,H} = 0. Laissant I’hamiltonien invariant, cette contrainte est en fait génératrice d’une symétrie
globale. Une autre facon de comprendre la chose est de se dire que {m,,H} = 0 implique que \* =
Swhh’ = 0, ce qui traduit le fait que le systéme ne subit pas de transformation de jauge et que donc
la symétrie ne peut étre que globale (en d’autres termes, on a une constante de Noether, quantité qui,
on le sait, génére des symétries globales).

11.3.4 Dans un systéme hamiltonien étendu

Dans le formalisme de ’hamiltonien étendu, toutes les contraintes de premiére classe correspondent
A une symétrie de jauge si le systéme est statique;

Qp =gl (t) (263)

est un générateur de symétrie de jauge (ou symétrie locale). Ces générateurs ne sont autres que
des combinaisons linéaires des contraintes, ils sont donc faiblement nuls. On note que les générateurs
de symétrie globale ne s’annule pas sur la surface des contraintes. On comprend alors que seules les
symétries globales définissent des charges conservées non-triviales.

11.3.5 En électromagnétisme

Une combinaison linéaire Qp = ,S” e(t) + ng)es(t) des contraintes primaires et secondaires de

premiére classe 7((11) et yéz) est génératrice d’une symétrie de jauge si les fonctions locales € (t) et £°(t)

satisfont
de®(t)

dt

En effet, les contraintes de premiére classe sont telles que, comme la dérivée totale par rapport au
temps d’une contrainte de premiére classe reste de premiére classe dans le cas statique :

£ TR + TPEN) = 0 (264)

00 Hry = VT 4T (265)
(v He} = P77 + VTS (266)
Ce qui implique :
{Qu, Hr} + 0,01 = 4 Vee +7Pés + (4D Hple® + {7, Hp)e® (267)
= /D TE + 5T + &) (268)
+ AP (TP + T + €°) (269)

On voit bien que (264) doit étre satisfait pour que Qg soit bien générateur de symétrie de jauge.
Nous pouvons noter que si on trouve que % = 0, alors les €° sont des constantes et les contraintes

secondaires de premiére classe générent des symétries qui sont globales.

Un exemple qui illustre cela est celui de 'électromagnétisme. Déterminons avant tout ’hamiltonien
a partir du lagrangien de Maxwell. Nous savons que la densité lagrangienne et le lagrangien sont :

1 .
L=—FuF" L:/fﬁﬁ (270)

Ou Fy,, = 0,A, — 0,A,. Notons que ce lagrangien reste inchangé (6£ = 0) sous les transformations
A, — A+ 0,9 (z) et/ou Ag — Ag + T(x). En développant F,, F* et en prenant la métrique de
Minkowski conventionnelle (—, +,+,4), on a que :

1 1
L= _EaiAjFij — OgA;0;Ag + 5 Z ((&AO)Q 4 (aoAZ)Q) (271)
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Les moments sont calculés a partir de la densité lagrangienne :

oL

m=_—"-__—0 = contrainte primaire = Ay = F(z" 272
- oL

"= ———— = 0pA; — 0;A0 = Fy; 273

D(A)) " 0= 0 (273)

= 0p4; = g + 0; Ag (274)

La densité hamiltonienne canonique peut maintenant étre calculée.

9. =1'0A; — L (275)
| ) 1 . .
= §HZH1 + HlaiAo + EalAJFij (276)

Avec O'ATF;; = %FijF,—j. L’hamiltonien canonique qui en découle est, en prenant
Hlale = OI(AOHZ) - AOOZH’ :

A 1. 1
H, = /d?’x’ﬁc = /d?’xl [51'[’1'[2 — AgO;IT* + ZFijFij] 4 termes aux bords (277)

FEt 'hamiltonien total est, quant & lui :

1. . 1
DT = §H’HZ — ApO,IT" + ZFijFij + )\(l‘) (278)
1 ]
Hr = /d?’.’L‘Z [iﬂlﬂz — Ao, IT* + ZFijEj + )\(ﬂf)] (279)
La contrainte primaire est ¢() = II° elle permet de déterminer une contrainte secondaire :

(%), Hr(y)} = g}% = O = ¢(@ 3. Ces deux contraintes sont de premiere classe. Le généra-
teur de symétrie de jauge est une combinaison linéaire des contraintes primaires et secondaires de
premiére classe :

Qu = / P2 [eD ()T + £(2)TT) = / Baie(2),TT — Bye(x)TI°] (280)

Cette derniére égalité est une conséquence du fait que la relation (264) doit étre satisfaite. Les
crochets des contraintes avec la deusité hamiltonienne nous indiquent que seul 7, est non nul et
vaut 1. Il en découle que dpe(z) + 1eMM(x) = 0 et donc €M) = —dge.

1l est maintenant possible de déterminer la symétrie générée par Qp ; il suffit de calculer
SAM = {AM(z), Qu(y)} -

540 = b [ @45 — AT — eI = 50 (a0 (28

= —0pe(x) (282)

sai = 9 / Byi63 (@ — y)[e()OIT — Do ()1 (283)
AT (2)

— i 1 = gy [ 45 @ - et (254)

= —0;e(x) (285)

En bilan, nous retrouvons, rassurés, la transformation de symétrie bien connue

SAH = 9,(—e(x)) (286)

3. Note; on aurait {II°(z), Hr(y)} = f‘;gz((:g %H#g)) =0z —2) [Py (2 — y)%ﬁTlT =3, 271_[;53(xi —2') = oIl
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