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Definition:  


A Lie group is a manifold G that has a group structure consistent with its 
manifold structure in the sense that group multiplication :





is a  map 


Their is also the inversion map  


It possed an identity element: e


Lie group can be finite or infinite dimensional 

μ : G × G → G, (g, h) ↦ gh

C∞

I : G → G; g ↦ g−1

Lie group 
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1) SO(3)

 

SO(3):  


We can identify SO(3) as the set of rotation matrices in the 3 dimensional 
Euclidean space 





2)Poincaré group: 


Symmetry group of Minkowski space, describe relativistic particle, Origine of 
relativistic wave equations 

{R3×3 ∣ det(R) = 1 & RtR = 1}

Lie group
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A Lie algebra is a vector space  ( )  with a binary operation 


called the Lie bracket


The Lie bracket have to satisfy the following axioms:

1)Bilinearity


   where   


2)Anticommutativity 




3)Jacobi identity 




𝔤 TeG [ . , . ] : 𝔤 × 𝔤 → 𝔤

[ax + by, z] = a[x, z] + b[y, z]
[z, ax + by] = a[z, x] + b[z, y]

x, y, z ∈ 𝔤 a, b ∈ ℜ

[x, y] = − [y, x]

[x, [y, z]] + [z, [x, y]] + [y[z, x]] = 0

Lie algebra 
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We call generators of a Lie group, the element of the set that generate the 
whole Lie algebra 


Exemple: SO(2)

1 parameter required 




J: generator of SO(2)


SO(3): 

3 generators  


ISO(1,3):

10 generators: 4 translations, 3 boosts, 3 rotations 


Important property: from the Lie algebra you can generate any FINITE element 
of the group by the exponential map 


R = 1 − iδϕJ

{Jx, Jy, Jz}

Lie algebra 
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Representation of a Lie group 


A representation of a Lie group G is given by (V, ) where V is a vector space 
and 


Casimir operator: it is an operator that commute with every elements of the 
representation 


Exemple: 


-Angular momentum in quantum mechanics 


ρ
ρ : G → GL(V )

Representation of a group
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• Symplectic geometry developed by Jean-Marie Souriau


• 1961-1962,Kirillov,Kostant find a correspondance 
between Orbits          UIR for a given group


• Goal:Generalize the work of Kosinski 


Introduction
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Poincare group for massive particle
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• Poincaré group in d dimensions: 


•  Generators 


• Multiplication law:          


• Casimirs operators Dimension dependent

• In D=4,  and  


• Study Coadjoint orbit        Fix every Eigenvalue of Casimirs 
operator(Seen as constraints) 

SO(d − 1,1) ⋊ ℝd

d(d + 1)
2

P, M

(Λ1, a1) ⋆ (Λ2, a2) = (Λ1Λ2, Λ1a2 + a1)

→
P2 = m2 W2 = − m2s(s + 1)
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For light-cone orbit 2 distincts case:

-Finite spin

-Infinite spin 


Unitary irreducible representation

of Poincare group
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Type Orbit Associated UIR
Mass-shell Massive 
Light-cone Massless

Hyperboloid Tachyonic 

p2 = m2

p2 = 0
p2 = − m2
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For a given  Lie group G, algebra , dual algebra 


We have the pairing   where ,  


the coadjoint action :


 where g 


the coadjoint orbit to a specific point 





𝔤 𝔤*

⟨η, x⟩ ∈ ℜ x ∈ 𝔤 η ∈ 𝔤*

⟨Ad*g (η), x⟩ = ⟨η, g−1xg⟩ ∈ G

η0

Orb(η0) = {Ad*g (η0) ∣ g ∈ G}

Coadjoint orbits 
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Properties of coadjoint orbits 


• Coadjoint orbits of a finite Lie algebra is symplectic 
manifold which is even dimensional


• If G is a Lie group, ,  its stability subgroup under 

the co-adjoint action then 


η ∈ 𝔤* Gη
Orb(η) = G/Gη

Coadjoint orbits
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We use  the following Algorithm:


• Fix a canonical point by looking at constraints  


• Find a suitable parametrization of the group


• Act on this point with Ad*


• Quantize the orbit 


Algorithm to find UIR
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Step for quantization 


Function mapped to linear hermitian operators 


• Weyl Ordering           


• Von Newman rule: 




p0xa →
1
2

( ̂p0 ̂xa + ̂xa ̂p0)

{p, x, s} → { ̂p, ̂x, ̂s}

Quantization 
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From commutator we get Poisson brackets 


 








Pμ ⇌ ζμ

Mμν ⇌ ζμν

W ⇌ ω

[Pα, Pβ] = 0 ⇌ {ζα, ζβ} = 0

[Mμν, Pβ] = i(ηνβPμ − ημβPν) ⇌ {ζμν, ζβ} = ηνβζμ − ημβζν

[Mμν, Mαβ] = i(ημβMνα + ηναMμβ − ημαMνβ − ηνβMμα) ⇌ {ζμν, ζαβ} = ημβζνα + ηναζμβ − ημαζνβ − ηνβζμα

Dual algebra of Poincaré group
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Contents
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ISO(4,1) : 15 generators 


3 Casimirs: 


,  Where  , with 




Such that:


                                 


Little group contain 

Dim(O)=12

P2 = m2 WμνWμν, ℍ = WμνMμν Wμν =
1
2

ϵμνρσδMρσPδ

μ ∈ (0,..,4)

1
8

(WμνWμν + mℍ) = m2s1(s1 + 1)

1
8

(WμνρWμν − mℍ) = m2s2(s2 + 1)

SO(4) = SO(3) × SO(3)
→

ISO(4,1)
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The coadjoint action for Poincare group:





                 


where  


massive particle:   


if we consider only rotation  ,  with (a,b) 


looking at translation  


Stabilizer: 


Ad*g (ζμ) = Λ ν
μ ζν

Ad*g (ζμν) = ζαβΛ α
μ Λ β

ν − ζβ(aνΛ β
μ − Λ β

ν aμ)

g = (Λ, a) ∈ ISO(4,1)

ζμζμ = m2 → ζμ = (m,0,0,0,0)

→ ζab = S̄cdϵcdab ∈ (1,...,4)

→Ad*(1,a)(ζ0b) = ζ0b − mab →ζ0b = 0

SO(4) × R

Coadjoint Orbit 
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We can use the same parametrization as D=4 :


Lorentz elements:  where 

L:Pur boost


B : Rotation that put s into its actual direction


 transform S 


                                           


Translation elements: a=z+y







Λ = LR R = RB

∈ GsR

R̄

B =

1 0 0 0 0
0 cos α −sin α 0 0
0 sin α cos α 0 0
0 0 0 cos β −sin β
0 0 0 sin β cos β

z = (z0, ⃗0 ), y = (0, ⃗y )

→(Λ, a) = (1,y)(L,0)(R,0)(B, z)

Massive particle D=5
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Acting with :


                                   


Where:                


Poisson brackets take the form:





Ad*g
ζab = −paxb + pbxa + Jab

ζ0a = −p0xa +
pbJab

m + p0

xa ≡ ya −
ϵabcdSbcpd

(m + p0)
, Jab = Scdϵabcd

{Jab, Jcd} = (δacJbd + δbdJac − δadJbc − δbcJad), {xa, p0} =
−pa

p0
, {pμ, pν} = 0

{xa, xb} = 0, {xa, pb} = δab, {xa, Jbc} = 0, {pa, Jbc} = 0

Massive particle D=5
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Inner product:      


x’s becomes a operator : 


Representation:


( f, g) = ∫ d̃p f(p)g(p)

̂xa = + i(
∂

∂pa
−

pa

2 |p2 |
)

M̂0a = − i ̂p0
∂

∂pa
+

̂pd
̂Sbcϵabcd

m + p0

M̂ab = ζab = i( ̂pb
∂

∂pa
− ̂pa

∂
∂pb

) + ̂Scdϵabcd

Representation of Poincaré group
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Contents
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Massless particle  


Non zero components of Pauli-Lubanski tensor: 





finite spin   (Helicity condition) yields to 





 


→ P2 = 0 → ζμ = (k,0,0,0,k)

ω01 = ω41 = − kζ23, ω12 = k(ζ30 + ζ34)
ω02 = ω42 = − kζ31, ω23 = k(ζ10 + ζ14)
ω03 = ω43 = − kζ12, ω31 = k(ζ20 + ζ24)
ω04 = 0

→ ϵμνρσδζρωσρ = 0

μ = 0,ν = 1 → ω23 = 0
μ = 0,ν = 2 → ω31 = 0
μ = 0,ν = 3 → ω12 = 0

→ ζ0i = ζi4

Massless particle D=5
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Another parameter has to be taken in consideration!! 


The spin equation (specify the UIR of the little group):


                                   


in components that yield to:

                             

                             


we fix our canonical point to be: 





Dim(O)=10

𝕊μ ≡ ϵμνρσδζνρωσδ = s2ζμ

[(ζ04)2 + (ζ12)2 + (ζ31)2 + (ζ32)2] = s2

ζμ = (k,0,0,0, − k)

ζab = Scdϵabcd

ζ0a = 0

Massless particle D=5
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Lorentz elements: 

(In light-cone coordinates)





Translation elements: 

a=DRh+y 





B =

Λ+
+ 0 0 0 0

Λ−
+

1
Λ+

+

Λ1
+

Λ+
+

Λ2
+

Λ+
+

Λ3
+

Λ+
+

Λ1
+ 0 1 0 0

Λ2
+ 0 0 1 0

Λ3
+ 0 0 0 1

D =

1 Λ+
−

Λ+
+

d1 d2 d3

0 1 0 0 0
0 d1 1 0 0
0 d2 0 1 0
0 d3 0 0 1

R =

1 0 0 0 0
0 1 0 0 0
0 0 b1 b2 b3

0 0 c1 c2 c3

0 0 e1 e2 e3

D, R, h ∈ Gs

Parametrization
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Acting with this parametrization and performing a suitable variable change one find:


                                                 


The poisson takes the following form:








ζij = Jij + pjxi − pixj

ζ4i = pix4 − p4xj +
pkJki

2p+

ζ0i = −yi p0 −
pkJki

2p+

ζμ = pμ

{ζμ, ζν} = 0 = {pμ, pν}, {ζ0i, p0} = − ζi = − pi, {Jki, pμ} = 0

{yi, p0} =
pi

p0
, {yi, pj} = δij, {yμ, yν} = 0, {yμ, Jjk} = 0

{Jkl, Jij} = δkiJlj + δljJki − δkjJli − δliJkj

Coadjoint orbit
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M̂04 = −ip0
∂

∂p4

M̂ij = ̂Jij + i(pj
∂

∂pi
− pi

∂
∂pj

)

M̂0i = −ip0
∂

∂pi
−

pk ̂Jki

p0 − p4

M̂4i = i(−p4
∂

∂pi
+ pi

∂
∂p4

) −
pk ̂Jki

p0 − p4

Quantization
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We can use the same parametrization  and the same 
decomposition  as D=4 


Acting with this parametrization on the canonical point we 
get:                            


                                   

ζμ ≡ Λ 0
μ m = pμ

ζ0a = −p0xa +
peJae

m + p0

ζab = pbxa − paxb + Jab

Generalization massive particle 
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M̂0a = + ip0
∂

∂pa
+

pb
̂Jab

m + p0

M̂ab = i(pb
∂

∂pa
− pa

∂
∂pb

) + ̂Jab

Quantization
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By the same way we get:


                                              


                                                                 

ζij = Jij + pjxi − pixj

ζd−1i = pixd−1 − pd−1xj +
pkJki

2p+

ζ0i = −yip0 −
pkJki

2p+

ζμ = pμ

Generalization massless particle 
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M̂0d−1 = − ip0
∂

∂pd−1

M̂ij = ̂Jij + i(pj
∂

∂pi
− pi

∂
∂pj

)

M̂0i = − ip0
∂

∂pi
−

pk ̂Jki

p0 − pd−1

M̂d−1i = i(−pd−1
∂

∂pi
+ pi

∂
∂pd−1

) −
pk ̂Jki

p0 − pd−1

Quantization
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