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Lie group

Definition:

A Lie group is a manifold G that has a group structure consistent with its
manifold structure in the sense that group multiplication :

u:GxXG -G, (g,h)— gh
isa C*® map
Their is also the inversionmap I: G — G; g+ g_1

It possed an identity element: e

Lie group can be finite or infinite dimensional



Lie group
1) SO(3)

We can identify SO(3) as the set of rotation matrices in the 3 dimensional
Euclidean space

1 0 0 cos@ (0 siné cos —sinf 0
Ry(0)=| 0 cosf —sinf |, Ry () = 0 1 0 \ R,(0) = | sinf cos@® 0 |.
0 sin@ cosé —sinf 0 cos@ 0 0 1

2)Poincaré group:

Symmetry group of Minkowski space, describe relativistic particle, Origine of
relativistic wave equations



Lie algebra

A Lie algebra is a vector space g (7,G) with a binary operation [.,.]: gXg — g
called the Lie bracket

The Lie bracket have to satisfy the following axioms:
1)Bilinearity

l[ax + by, z] = alx, z] + bly, 7]

where Xx,y,7 € a,beR
[2,ax + by] = alz,x] + bz, ] =9

2)Anticommutativity
[x, y] = — [y, x]

3)Jacobi identity
[x, Ly, 211 + [z, [x, y]1 + [y[z, x]] = O



Lie algebra

We call generators of a Lie group, the element of the set that generate the
whole Lie algebra

Exemple: SO(2)
1 parameter required
R=1-io¢J
J: generator of SO(2)

SO(3):
3 generators {J,, J,, J,}
1SO(1,3):

10 generators: 4 translations, 3 boosts, 3 rotations

Important property: from the Lie algebra you can generate any FINITE element
of the group by the exponential map



Representation of a group

Representation of a Lie group

A representation of a Lie group G is given by (V,p) where V is a vector space
andp : G — GL(V)

Casimir operator: it is an operator that commute with every elements of the
representation

Exemple:

-Angular momentum in quantum mechanics




Introduction

e Symplectic geometry developed by Jean-Marie Souriau

e 1961-1962,Kirillov,Kostant find a correspondance
between Orbits <— UIR for a given group

e Goal:Generalize the work of Kosinski




Poincare group for massive particle

« Poincaré group in d dimensions: SO(d — 1,1) X R4
did+ 1)

Generators P, M

e Multiplication law: (A, a;) x (A, a,) = (AN, Aja, + ay)

o Casimirs operators—Dimension dependent
e InD=4, P? = m? and W? = — m?s(s + 1)

o Study Coadjoint orbit<+— Fix every Eigenvalue of Casimirs
operator(Seen as constraints)



Unitary irreducible representation

of Poincare group

Type Orbit Associated UIR
p — m? Mass-shell Massive
p =0 Light-cone Massless
p?>=—m? |Hyperboloid Tachyonic

For light-cone orbit 2 distincts case:
-Finite spin

it cni




Coadjoint orbits

For a given Lie group G, algebra g, dual algebra g*

We have the pairing (1, x) € R where x € g,n € g*

the coadjoint action :
(Ad(n),x) = (1,8~ 'xg) whereg € G

the coadjoint orbit to a specific point 7,

Orb(ny) = {Ad%(py) | g € G)



Coadjoint orbits

Properties of coadjoint orbits

« Coadjoint orbits of a finite Lie algebra is symplectic
manifold which is even dimensional

o If G is a Lie group,n € g*, G,7 its stability subgroup under
the co-adjoint action then Orb(n) = G/ G,




Algorithm to find UIR

We use the following Algorithm:

 Fix a canonical point by looking at constraints
e Find a suitable parametrization of the group

e Act on this point with Ad*

e Quantize the orbit




Quantization

Step for quantization

Function mapped to linear hermitian operators

1
. Weyl Ordering —» PoXqa — 5([30550 + ﬁaﬁo)

e Von Newman rule:

{p,x,S} — {ﬁ’x’s}}




Dual algebra of Poincaré group

u CM
—
MW = pr
- @
From commutator we get Poisson brackets

[Py, Ppl =0 = {Cp. st =0

[M/,H/v Pﬁ] — l(”UﬂP/,t — nluﬂpl/) - {C,uw Cﬁ} — r]yﬁgu — ”Iuﬁé,l/

(Mo Mop) = 1005 My+ MMy = 1uaMup = pMye) = 80 Capd = Mupua  Moabpp = Muaup ~ Moy
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1SO(4,1)

1SO(4,1) : 15 generators

3 Casimirs:
1
P =m?*, W W, H = WM, Where WK = Eeﬂ”p“‘SMpan , with
u € (0,..,4)
Such that:

1
g(WP‘”WMV +mH) = m2s,(s; + 1)
1
g(WﬂwWW — mH) = m%s,(s, + 1)

Little group contain SO(4) = SO(3) X SO(3)
—Dim(0)=12



Coadjoint Orbit

The coadjoint action for Poincare group:
Adg () = NG,
AdF(G,) = CphiNS = La, NS = Afa)
where g = (A, a) € ISO(4,1)
massive particle: C”Cﬂ = m? - % = (m,0,0,0,0)
if we consider only rotation — @ = S’Cdecdab, with (a,b) € (1,...,4)

looking at translation =Ad* 0. )(COb) Cop — may, =y, =0

Stabilizer:SO(4) X R
~ Université de Mons [T



Massive particle D=5

We can use the same parametrization as D=4 :

Lorentz elements: A = LR where R = RB
L:Pur boost

B € G,R: Rotation that put s into its actual direction

R transform S

(1 0 0 0 0
0O cosa —sina O 0
B=]0 sina cosa 0 0
0 O 0 cosf —sinf
\0 0 0 sinff cosf

/
Translati(m elements: a=z+y
z=("0),y=(0,5)
— (A, a) = (1,y)(L,0)(R,0)(B, 2)

~ Université de Mons [T



Massive particle D=5

Acting with Adg,k:
Z:azb = —DPaXp +pbxa + Jab
b
. P Jab
COa = —PoX, + 0
m+p
bc,.d
Where: X, =y — Cabed P J, = S%
. a = Ya o ab — abced
(m+ p°)
Poisson brackets take the form:
{Jab’ ch} — (5aCde+ 5bdjac _ 5adec _ 5bCJad), {xa’Po} — _pa, {pwpy} =0
Po
{-xaaxb} = 07 {xa’pb} = 5ab’ {xa’ ch} = 07 {pa"]bc} = O



Representation of Poincaré group

Inner product:  (f,g) = "cfp f(p)g(p)

0 Pq )
dp, 2|p?|

x’s becomes a operator : X, = + i(

Representation: A
R 0 D .S, €
Moa _ _ lﬁo n PaPbc€abed
apa m + Po

- 0 R A
Mab = Cab = l(pb ~— Fa ) + Scdeabcd
apa apb
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Massless particle D=5

Massless particle —» P> = 0 — (* = (k,0,0,0,k)

Non zero components of Pauli-Lubanski tensor:

%l = !l = — kCy3s w!'? = k(830 + Caa)
a)02 = 0)42 = — kC319 6023 — k(ClO + 514)
0B =P = -kl 03 =kCy+ G

0)04=O

finite spin — € CPw = 0 (Helicity condition) yields to

1/,065

u=0r=1-w>=

3=0
u=0r=2-w'=0
2=0

u=0r=3-w?=




Massless particle D=5

Another parameter has to be taken in consideration!!

The spin equation (specify the UIR of the little group):

Cvaaé — SZC

S//t=€,u U

vpoo

in components that yield to:

[(504)2 + (512)2 + (531)2 + (532)2] = 5*

we fix our canonical point to be:

Z, = (k0,0,0, - k)

_ qcd
Cab =3 €abcd

Dim(0)=10




Parametrization

Lorentz elements:
(In light-cone coordinates)

(A 0 0 0 0) [ \
_ 1 AL A2 A 1A—id1d2d3 (10 0 0 0
N PO I AY IO O
B={Al 0 1 o0 OD=0d1100R=00 1 by by
c, ¢ C
A2 0 0 1 0 0 d 0 1 0 00616263
1 6 €3
" )
Translation elements:
a=DRh+y
D,R,h € G,



Coadjoint orbit

Acting with this parametrization and performing a suitable variable change one find:
Gij = Jij + Pix; — Di%;

k
P i
C4i = PiXy — PaXj + :
V2p+
pk‘]kz
Coi = —YiPo —
V2p+
Cu = Dy

The poisson takes the following form:
{C ’Cl/} =0= {p,u’pv}’ {COi’pO} = - Ci = =P {Jkispﬂ} =0

Di
{¥oPol = P epit =65 ey} =0, {y,Jxt =0
0

Ui i} = Oy + 8y — 6101 — 65y



Quantization

n 0
04 — —lpoa_4
M= J;+ z‘(pji )
apl 0]7]
-
MOi — 1Py 0 . d
dp;  Po— Pa
n 0 0 pr,;
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Generalization massive particle

We can use the same parametrization and the same
decomposition as D=4

Acting with this parametrization on the canonical point we
get:

— 0. _
C,u — A/,t m _pﬂ

B PV
COa — _poxa + m +p0

Cab = PpXg — PoXp T Jab



Quantization




Generalization massless particle

By the same way we get:

Cij = Jij + PiX; — DiX;

k
P i
Ca—1i = PiXg—1 — Pa—1% +
V2p+
kaki
Coi = —YiPo —
V2pt




Quantization

n 0
My, = — ip op
d—1
n . 0 0
i )
. , kJ
Moy; = — ipp=— — ok
op;  Po— Pa-1
. 0 0 kT .
M, ;= U(—py_1— +p; - Pk
op; OPi—1  Po— Pa-1
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