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@ Derivation of a conformal invariant action for two massless relativistic
particles

© Study of the system using Dirac formalism
© Breaking of the conformal invariance
@ Quantization

© Solving the wave equation and discussion
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Single free massive particle

Action of a free relativistic particle

S=—m / dry/ —x2

= = = E DA
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Single free massive particle

Action of a free relativistic particle
S=-—m / dr/—%2 (1)

The momenta p, = aaTL“ = % are such that all velocities cannot be

expressed as x* = x*(x, p).

There are constraints = functions ¢™(p, x) which vanish on-shell.
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Single free massive particle

Action of a free relativistic particle

S=-m / dry/—x2 (1)

The momenta p, = aaTL# = \7% are such that all velocities cannot be
expressed as x* = xH(x, p).
There are constraints = functions ¢™(p, x) which vanish on-shell.

In our case, the constraint is:
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Hamiltonians and action with the einbein

S is invariant under reparametrization 7 — 7 — &(7).
We can show that the canonical Hamiltonian is equal to zero: H. = 0.
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Hamiltonians and action with the einbein

S is invariant under reparametrization 7 — 7 — &(7).

We can show that the canonical Hamiltonian is equal to zero: H. = 0.
Thus,

He = 40 (02 4 m?) 3)

The arbitrary function e(7) is called einbein.
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Hamiltonians and action with the einbein

S is invariant under reparametrization 7 — 7 — &(7).
We can show that the canonical Hamiltonian is equal to zero: H. = 0.
Thus,

He = 40 (2 4 ) (3
The arbitrary function e(7) is called einbein.
Then:
- €2 2
Se= [ dr (p = (6% + ) (4)

Using the stationary condition, we express p, as functions of (x”, e) and
reaches:

Action in the massless case

s- [ ars (5)

e is a variable.
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Conformal invariance

Goal: S must be invariant under:

= = = E DA
G. Lhost (UMons) Two-Particle Problem



Conformal invariance

Goal: S must be invariant under:
e Poincaré transformations: x* — x'* = at* + N\¥ x¥
e Dilation: x* — x* = \x*

R H ) o xM4atx?
e Special conformal transformations : x* — x'* = T TRt
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Conformal invariance

Goal: S must be invariant under:
¢ Poincaré transformations: x* — x'** = a* + A¥, x¥

e Dilation: x* — x* = \x*

xP+at x?

. . " "
¢ Special conformal transformations : x* — x'# = Tommrat®

This is checked if the einbein transforms as:

e — Xe  under dilation (6)

e : .
e — —;  under inversion (7)
X
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Conformal invariant action for two particles

Goal: find action for two interacting particles.
e x!': coordinates of the particle 1
e xb': coordinates of the particle 2

e Potential term: function of the relative positions. We define:

TR RN
' =x5 —x,

r? transforms under inversion as:

2.2
X1 %
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Conformal invariant action for two particles

Goal: find action for two interacting particles.

e x!': coordinates of the particle 1

e xb': coordinates of the particle 2

e Potential term: function of the relative positions. We define:

N TR
r _Xl X2

For two massless interacting relativistic particles, the action is:

. 2 2
X2 [0 €162
S=[ dr (242 2 )
/ 4 2e1+2e2+4 r?

G. Lhost (UMons) Two-Particle Problem April 21, 2021

7/33



Analysis with Dirac formalism

oL

—_— = 0
8e,-
71 and o are two primary constraints.

= = = E DA
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Analysis with Dirac formalism

oL _
0éj

71 and 7, are two primary constraints.

0

Hamiltonians

Canonical Hamiltonian:

2 2 2
€ €
H, — 12”1 n 622’”2 _ O‘T v réez + & + éom (10)
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Analysis with Dirac formalism

oL _
0éj

71 and 7, are two primary constraints.

0

Hamiltonians

Canonical Hamiltonian:

2 2 27
e o €162 . .
12/31 + 622/32 _ T r; + é1m + émo (10)

He =

We then find the total Hamiltonian:

2 2 2
e e a® \/ere
Hy = 12”1 n 22”2 - r; + AL 4 M2 (11)

A1 and A, are arbitrary functions.
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Analysis with Dirac formalism

Hamiltonians
Canonical Hamiltonian:
e1P% ezP% o? V€162

He = 5 + 5 —T 2 + ém + ém (12)

We then find the total Hamiltonian:

2 2 2
€ & A~ /€
Hr = 12pl + 22'02 — T r]2.e2 + )\171'1 -+ )\271'2 (13)

A1 and A are arbitrary functions.

Time derivative of a function:

2 f(x.p) = (£, Hr)
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Analysis with Dirac formalism

The primary constraints must be stable:

_1 5 a? ey _
{ﬂ17HT}_§<_p1+_4r2”_61> =p1~0
1 a? e
’H :—(—2 _ —): ~
{m2, HT} 5 p2+4r2”e2 ¢2 =0

¢1 and ¢, are secondary constraints.

G. Lhost (UMons) Two-Particle Problem April 21, 2021

10/33



Analysis with Dirac formalism

The primary constraints must be stable:

2

_1 2 « 62 o
{7T17HT}—§<—P1+4r2\/ 1) =¢1~0
1 a? e
H = — )_ ~
{m2, Hr} 2( I:>2+4rﬂ/e2 $2 =0

¢1 and ¢y are secondary constraints. We also impose {¢;; Hr} =~ 0:

2
¢3=£7(—Aﬁ“wi—e)
(\/@mrnL\/»pzr)
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Analysis with Dirac formalism

@3 vanishes if:

e 4
A\ :)\gé—i—ﬁ[elzpl.r—i—elegpg.r] (18)

Thus:

Final total Hamiltonian

Hr = H. + ;\(617'[‘1 + 6271'2) + Cmy (19)

Where C = %el(elpl.r+ ep2.r).
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Analysis with Dirac formalism

Classification of the constraints

e First-class: ¢ is first-class if the Poisson brackets with every
constraints vanishes on-shell.

e Second-class: at least one Poisson bracket with a constraint does not
vanish on the constraint surface.
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Analysis with Dirac formalism

Classification of the constraints

e First-class: ¢ is first-class if the Poisson brackets with every
constraints vanishes on-shell.

Second-class: at least one Poisson bracket with a constraint does not
vanish on the constraint surface.

e1m + exm is a primary first-class constraint

e Hr is first-class, so {HT, e1m + exma} too.

Second-class constraints: 71 and ¢
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Constraints and symmetry generator

In summary: we have two first-class (FC) constraints, a primary and a
secondary, and two second-class (SC) constraints, a primary and a
secondary too.

Summary

Constraints:

FC: o1 = €171 + exmo (primary) i Oy = elgb] + 62¢2 — Cﬂ'l (20)
SC: m (primary) ] (21)
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Constraints and symmetry generator

In summary: we have two first-class (FC) constraints, a primary and a
secondary, and two second-class (SC) constraints, a primary and a
secondary too.

Summary

Constraints:

FC: o1 = €171 + exmo (primary) i Oy = 61¢1 + 62(132 — Cﬂ'l (20)
SC: m (primary) ] (21)

Symmetry generator

We can compute the symmetry generator thanks to the "chain algorithm":

dr

G = i(f:e1)7r1 + C%_(Eeg)ﬂz — (ce1)¢1 — (ee2) 92 (22)

4
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Constraints and symmetry generator

Symmetry generator

We can compute the symmetry generator thanks to the "chain algorithm™":

© = %(561)71'1 + %(662)7'(2 — (ce1)¢1 — (ee2) 92

Symmetry transformations:

dei = di;_(se,-) oxl' = ext! (23)

g(7) is a time-dependent arbitrary function.
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degrees of freedom

#dof = #phase space variables — #SC constraints — 2.#FC constraints J

= = = E DA
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degrees of freedom

#dof = F#phase space variables — #SC constraints — 2.#FC constraints J

Counting of the dof

Massless interacting case:
#dof = 14
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degrees of freedom

#dof = F#phase space variables — #SC constraints — 2.#FC constraints J

Counting of the dof

Massless interacting case:
#dof = 14

If we turn off the interaction:

#dof =12

Free case should be studied independently
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Massive case

We add a mass m at the particles:

Action in massive case

X3 e +ey o Jae
S=1/[ d —1 2 2(—) Em ] 24
/ T 2e1 T MU )Ty 2 (24)

We have conformal invariance if m = 0.
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Massive case

We add a mass m at the particles:

Action in massive case

5= /dT 2—1+5‘—22—m2(m)+0‘%"\/@] (24)

€1 2 (5]

We have conformal invariance if m = 0.

Total Hamiltonian: .
1
Hrm = Hro + (

(25)
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Massive case

Constraints

FC:  o1m (primary) © Oom (26)
SC:  m (primary) ;. O1im (27)
Such that;
2
m
Pim = PLm=0 — - (28)
2
m
G2m = P2m=0 — -5 (29)
Olm = €171 + €272 = T1m=0 (30)
Oom = €1P1m + &Pom — Cmy (31)
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Massive case

Constraints

FC:  o1m (primary) ; oom (32)
SC:m (primary) i Gum (33)

We count one symmetry generator:
Gm:éalm—i-j\galm—ﬂzm (34)

And 14 degrees of freedom in phase space:

#dof =20—-2—2.4=14
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Killing vectors

Adding a mass at the particle breaks the conformal invariance.
Noether charges
Q=2 '(x1,%)piu
i

¢#(x1,x2) are the Killing vectors and pj, = g{—.?.

(35)

@ = 0 imposes conditions to the Killing vectors.
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Killing vectors, massless case

Masless case
We find that Killing vectors must obey the conformal Killing equation:

1
Oi(yGin) (X1) = 371305 Gia (36)
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Killing vectors, massless case

Masless case
We find that Killing vectors must obey the conformal Killing equation:

1
Oi(yGin) (X1) = 371305 Gia (36)

Therefore, there is conformal invariance and thus 15 independent vectors:

CIM =a" + M*x;, + )\Xlu + Bl/(77,ljx,2 - 2XI'I/X,H) (37)

15 conserved quantities

Translations: P, = p1, + p2,

Rotations: Ly, = x1uP1v + XeuP2v — X1wP1y — Xou P2y
Dilation: D = x{'p1, + X3 pov

SCT: S, = xlzplﬂ + xzngﬂ — 2X1,X] Ply — 2X2,X5 P2y
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Killing vectors, massive case

In the massive case, we do not have the conformal Killing equation:

8i(,u,<iu) (Xi) =0

The conformal symmetry is broken.

(38)

Poincarré transformations
e Translations: P, = p1, + po,

e Rotations: L[;w] = X1uPly + XouP2y — X1wvP1y — Xou P2y
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Quantization, Dirac method

Quantization of second-class constraints
e Suppose Xq |[¥) = 0. Thus [{g, Xa]|?) = 0.

e But the matrix [{g, Xa| is invertible by definition = [¢)) = 0. (We
don’t want this).

Thus we use the Dirac brackets in order to cancel the second-class
constraints.

Dirac brackets

[F; GI* == {F; G} — {Fi xa}(C"1)*{xs; G}
Cop = {Xa> X8}
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Quantization, Dirac method

Quantization of second-class constraints
e Suppose Xq |[¥) = 0. Thus [{g, Xa]|?) = 0.

e But the matrix [{g, Xa] is invertible by definition = [¢)) = 0. (We
don’t want this).

Thus we use the Dirac brackets in order to cancel the second-class
constraints. These latter are mapped on a trivial operator.

Correspondence rule
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Reduced space quantization

Reduced space quantization

e We define gauge conditions Cp: after gauge fixing, any function of
canonical variables can be viewed as the restriction in that gauge of a
gauge invariant function.

o det({Cp, FCy}) #0.

e Quantization of FC constraints and gauge conditions &~ quantization
of SC constraints.
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Center of mass coordinates
pi=pi+p) (41)
PL=pl —py (42)
1
qs = 504" +x5) (43)
1
g = 20d ) (44)

Second-class constraints are dropped:
FC constraints in CM coordinates with SC = 0

,71:7-[-2%0
4

(0%
Yo = (p2 4+ p2 +4m? —2p,.p_)(p2 + p2 +4m* +2p,.p_) — T 0
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Gauge conditions

There are two first-class constraints = we can fix two independent gauge
conditions.

Relevant gauge conditions

Gi:=plp— =0 Gri=ee—-1~=0 (45)

® p+ = (M,0,0,0) and p— = (Oaﬁ—)
e p? = p3: equitable energy distribution
e Via EOM: e, = ey =1and g =(0,4-)
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Gauge conditions

In particular, the constraint 7> becomes:

4
VIV 2\2 o
4m?)?2 = — 46
Consider the operator M?2:
A ~ az
M? = M?1 = 4m?1 + p 2 — — (47)
4G2
A physical state is an eigenstate of M2 with the eigenvalue 92
M2 W) = 9% W) (48)
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Equation

o?

Qi =L — 4qu) W(q, qlf) = v*W(q, ok) (49)

Solution

N S 92 a2
\U(r,a,(p)—A 2r\/m J¢>( (Y 4m r)YI,m/(ev(P) (50)

G. Lhost (UMons) Two-Particle Problem April 21, 2021 28 /33



Equation

2
(4m? — £ = 125) V(e df) =PV(t, gf) (49)
Solution
T 92 _ a2
\U(r, 9; QO) - A QFM J¢( 19 4m r) W,m/(97 SO) (50)

9

2m

m
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« can be r—dependent

Notice

We can choose
a(r) = ag + Kf(r)

e No conformal invariance
e Still 2 FC constraints and 2 SC constraints. Same number of dof.

e After quantization, constraint 7, stays the same (except a = a(r))!

\Ulym/(n 0, 90) = R(r) Y/,m/(97 90) (51)
Such that;
2 2
2(25—1-2 CC/TR—l—Rr (192—4m2)+(a7(r)—/(/+1))R:O (52)

— Discreet spectrum can be obtained.
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Summary and discussion

Summary

e \We have found a conformal invariant action for massless interacting
particles.

e We can give a mass at the particles and break the conformal
invariance as wished.

e We have the liberty to choose « in order to have a continuous or a
discreet spectrum.
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Summary and discussion

Summary

e \We have found a conformal invariant action for massless interacting
particles.

e We can give a mass at the particles and break the conformal
invariance as wished.

e We have the liberty to choose « in order to have a continuous or a
discreet spectrum.

Discussion
e Interesting playground: playing with m and «(r), we can easily go from
massive confined case to conformal window with continuous spectrum.
o Unparticles: particles described with a scale invariant gauge theory
with a continuous mass spectrum. — S is a good candidate for
unparticles.
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Thank you for your attention !
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