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2 Study of the system using Dirac formalism
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Single free massive particle

Action of a free relativistic particle

S = −m
∫

dτ
√
−ẋ2 (1)

The momenta pµ = ∂L
∂ẋµ =

mẋµ√
−ẋ2 are such that all velocities cannot be

expressed as ẋµ = ẋµ(x , p).

There are constraints = functions φm(p, x) which vanish on-shell.

In our case, the constraint is:

p2 + m2 ≈ 0 (2)

G. Lhost (UMons) Two-Particle Problem April 21, 2021 3 / 33



Single free massive particle

Action of a free relativistic particle

S = −m
∫

dτ
√
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−ẋ2 are such that all velocities cannot be

expressed as ẋµ = ẋµ(x , p).
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Hamiltonians and action with the einbein

S is invariant under reparametrization τ → τ − ε(τ).
We can show that the canonical Hamiltonian is equal to zero: Hc = 0.

Thus,

HE =
e(τ)

2
(p2 + m2) (3)

The arbitrary function e(τ) is called einbein.
Then:

SE =

∫
dτ (pµẋ

µ − e

2
(p2 + m2)) (4)

Using the stationary condition, we express pµ as functions of (xν , e) and
reaches:

Action in the massless case

S =

∫
dτ

ẋ2

e
(5)

e is a variable.
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µ − e

2
(p2 + m2)) (4)

Using the stationary condition, we express pµ as functions of (xν , e) and
reaches:

Action in the massless case

S =

∫
dτ

ẋ2
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Conformal invariance

Goal: S must be invariant under:

� Poincaré transformations: xµ −→ x ′µ = aµ + Λµνxν

� Dilation: xµ −→ x ′µ = λxµ

� Special conformal transformations : xµ −→ x ′µ = xµ+αµx2

1+2α.x+α2x2

This is checked if the einbein transforms as:

e −→ λ2e under dilation (6)

e −→ e

x4
under inversion (7)
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Conformal invariant action for two particles

Goal: �nd action for two interacting particles.

� xµ1 : coordinates of the particle 1

� xµ2 : coordinates of the particle 2

� Potential term: function of the relative positions. We de�ne:

rµ = xµ1 − xµ2

r2 transforms under inversion as:

r ′2 =
r2

x21x
2
2

(8)
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Conformal invariant action for two particles

Goal: �nd action for two interacting particles.

� xµ1 : coordinates of the particle 1

� xµ2 : coordinates of the particle 2

� Potential term: function of the relative positions. We de�ne:

rµ = xµ1 − xµ2

For two massless interacting relativistic particles, the action is:

S =

∫
dτ

( ẋ12
2e1

+
ẋ2

2

2e2
+
α2

4

√
e1e2
r2

)
(9)

α > 0.
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Analysis with Dirac formalism

∂L

∂ėi
= 0

π1 and π2 are two primary constraints.

Hamiltonians

Canonical Hamiltonian:

Hc =
e1p

2
1

2
+

e2p
2
2

2
− α2

4

√
e1e2
r2

+ ė1π1 + ė2π2 (10)

We then �nd the total Hamiltonian:

HT =
e1p

2
1

2
+

e2p
2
2

2
− α2

4

√
e1e2
r2

+ λ1π1 + λ2π2 (11)

λ1 and λ2 are arbitrary functions.
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Analysis with Dirac formalism

Hamiltonians

Canonical Hamiltonian:

Hc =
e1p

2
1

2
+

e2p
2
2

2
− α2

4

√
e1e2
r2

+ ė1π1 + ė2π2 (12)

We then �nd the total Hamiltonian:

HT =
e1p

2
1

2
+

e2p
2
2

2
− α2

4

√
e1e2
r2

+ λ1π1 + λ2π2 (13)

λ1 and λ2 are arbitrary functions.

Time derivative of a function:

d

dτ
f (x , p) = {f ,HT}
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Analysis with Dirac formalism

The primary constraints must be stable:

{π1,HT} =
1

2

(
− p21 +

α2

4r2

√
e2
e1

)
:= φ1 ≈ 0 (14)

{π2,HT} =
1

2

(
− p22 +

α2

4r2

√
e1
e2

)
:= φ2 ≈ 0 (15)

φ1 and φ2 are secondary constraints.

We also impose {φi ;HT} ≈ 0:

φ3 =
α2

16r2

(
− λ1

√
e2
e31

+ λ2
1

√
e1e2

)
(16)

+
α2

4r4

(√
e1e2p1.r +

√
e32
e1

p2.r
)

(17)
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Analysis with Dirac formalism

φ3 vanishes if:

λ1 = λ2
e1
e2

+
4

r2
[
e21p1.r + e1e2p2.r

]
(18)

Thus:

Final total Hamiltonian

HT = Hc + λ̃(e1π1 + e2π2) + Cπ1 (19)

Where C = 4
r2
e1(e1p1.r + e2p2.r).
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Analysis with Dirac formalism

Classi�cation of the constraints

� First-class: φ is �rst-class if the Poisson brackets with every
constraints vanishes on-shell.

� Second-class: at least one Poisson bracket with a constraint does not
vanish on the constraint surface.

� e1π1 + e2π2 is a primary �rst-class constraint

� HT is �rst-class, so {HT , e1π1 + e2π2} too.
� Second-class constraints: π1 and φ1
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Constraints and symmetry generator

In summary: we have two �rst-class (FC) constraints, a primary and a
secondary, and two second-class (SC) constraints, a primary and a
secondary too.

Summary

Constraints:

FC : σ1 = e1π1 + e2π2 (primary) ; σ2 = e1φ1 + e2φ2 − Cπ1 (20)

SC : π1 (primary) ; φ1 (21)

Symmetry generator

We can compute the symmetry generator thanks to the "chain algorithm":

G =
d

dτ
(εe1)π1 +

d

dτ
(εe2)π2 − (εe1)φ1 − (εe2)φ2 (22)
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Constraints and symmetry generator

Symmetry generator

We can compute the symmetry generator thanks to the "chain algorithm":

G =
d

dτ
(εe1)π1 +

d

dτ
(εe2)π2 − (εe1)φ1 − (εe2)φ2

Symmetry transformations:

δei =
d

dτ
(εei ) δxµi = εẋµi (23)

ε(τ) is a time-dependent arbitrary function.

G. Lhost (UMons) Two-Particle Problem April 21, 2021 14 / 33



degrees of freedom

#dof = #phase space variables−#SC constraints− 2.#FC constraints

Counting of the dof

Massless interacting case:
#dof = 14

If we turn o� the interaction:

#dof = 12

Free case should be studied independently
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Massive case

We add a mass m at the particles:

Action in massive case

S =

∫
dτ

[ ẋ21
2e1

+
ẋ22
2e2
−m2

(e1 + e2
2

)
+
α2
m

4

√
e1e2
r2

]
(24)

We have conformal invariance if m = 0.

Total Hamiltonian:

HTm = HT0 +
(e1 + e2

2

)
m2 (25)
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Massive case

Constraints

FC: σ1m (primary) ; σ2m (26)

SC: π1 (primary) ; φ1m (27)

Such that:

φ1m = φ1m=0 −
m2

2
(28)

φ2m = φ2m=0 −
m2

2
(29)

σ1m = e1π1 + e2π2 = σ1m=0 (30)

σ2m = e1φ1m + e2φ2m − Cπ1 (31)
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Massive case

Constraints

FC: σ1m (primary) ; σ2m (32)

SC: π1 (primary) ; φ1m (33)

We count one symmetry generator:

Gm = ε̇σ1m + λ̃2σ1m − σ2m (34)

And 14 degrees of freedom in phase space:

#dof = 20− 2− 2 . 4 = 14
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Killing vectors

Adding a mass at the particle breaks the conformal invariance.

Noether charges

Q =
∑
i

ζµi (x1, x2)piµ (35)

ζµi (x1, x2) are the Killing vectors and piµ = ∂L
∂ẋµi

.

Q̇ = 0 imposes conditions to the Killing vectors.
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Killing vectors, massless case

Masless case

We �nd that Killing vectors must obey the conformal Killing equation:

∂i(γζiµ)(xi ) =
1

4
ηγµ∂

α
i ζiα (36)

Therefore, there is conformal invariance and thus 15 independent vectors:

ζµi = aµ + Mµνxiν + λxµi + Bν(ηµν x
2
i − 2xiνx

µ
i ) (37)

15 conserved quantities

� Translations: Pµ = p1µ + p2µ

� Rotations: L[µν] = x1µp1ν + x2µp2ν − x1νp1µ − x2νp2µ

� Dilation: D = xν1 p1ν + xν2 p2ν

� SCT: Sµ = x21p1µ + x22p2µ − 2x1µx
ν
1 p1ν − 2x2µx

ν
2 p2ν
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Killing vectors, massive case

In the massive case, we do not have the conformal Killing equation:

∂i(µζiν)(xi ) = 0 (38)

The conformal symmetry is broken.

Poincarré transformations

� Translations: Pµ = p1µ + p2µ

� Rotations: L[µν] = x1µp1ν + x2µp2ν − x1νp1µ − x2νp2µ
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Quantization, Dirac method

Quantization of second-class constraints

� Suppose χ̂α |ψ〉 = 0. Thus [χ̂β, χ̂α] |ψ〉 = 0.

� But the matrix [χ̂β, χ̂α] is invertible by de�nition =⇒ |ψ〉 = 0. (We
don't want this).

Thus we use the Dirac brackets in order to cancel the second-class
constraints.

Dirac brackets

[F ;G ]∗ := {F ;G} − {F ;χα}(C−1)αβ{χβ;G}

Cαβ = {χα, χβ}
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Quantization, Dirac method

Quantization of second-class constraints

� Suppose χ̂α |ψ〉 = 0. Thus [χ̂β, χ̂α] |ψ〉 = 0.

� But the matrix [χ̂β, χ̂α] is invertible by de�nition =⇒ |ψ〉 = 0. (We
don't want this).

Thus we use the Dirac brackets in order to cancel the second-class
constraints. These latter are mapped on a trivial operator.

Correspondence rule

[
Â; B̂

]
= i~ ̂[A;B

]∗
(39)

χα = 0⇒ χ̂α = 0̂ (40)
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Reduced space quantization

Reduced space quantization

� We de�ne gauge conditions Cb: after gauge �xing, any function of
canonical variables can be viewed as the restriction in that gauge of a
gauge invariant function.

� det({Cb,FCα}) 6= 0.

� Quantization of FC constraints and gauge conditions ≈ quantization
of SC constraints.
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Center of mass coordinates

pµ+ = pµ1 + pµ2 (41)

pµ− = pµ1 − pµ2 (42)

qµ+ =
1

2
(xµ1 + xµ2 ) (43)

qµ− =
1

2
(xµ1 − xµ2 ) (44)

Second-class constraints are dropped:

FC constraints in CM coordinates with SC = 0

γ1 = π2 ≈ 0

γ2 = (p2+ + p2− + 4m2 − 2p+.p−)(p2+ + p2− + 4m2 + 2p+.p−)− α4

16q4−
≈ 0
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Gauge conditions

There are two �rst-class constraints =⇒ we can �x two independent gauge
conditions.

Relevant gauge conditions

G1 := pγ+p−γ ≈ 0 G2 := e1e2 − 1 ≈ 0 (45)

� p+ = (M, 0, 0, 0) and p− = (0, ~p−)

� p21 = p22 : equitable energy distribution

� Via EOM: e1 = e2 = 1 and q− = (0, ~q−)

G. Lhost (UMons) Two-Particle Problem April 21, 2021 26 / 33



Gauge conditions

In particular, the constraint γ2 becomes:

(p̂2+ + p̂2− + 4m2)2 =
α4

16q̂4−
(46)

Consider the operator M̂2:

M̂2 = M211 = 4m211 + ~̂p 2
− −

α2

4~̂q 2
−

(47)

A physical state is an eigenstate of M̂2 with the eigenvalue ϑ2:

M̂2 |Ψ〉 = ϑ2 |Ψ〉 (48)
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Equation (
4m2 −4− −

α2

4~q 2
−

)
Ψ(qµ−, q

µ
+) = ϑ2Ψ(qµ−, q

µ
+) (49)

Solution

Ψ(r , θ, ϕ) = A

√
π

2r
√
ϑ2 − 4m2

Jφ(
√
ϑ2 − 4m2r)Yl ,ml

(θ, ϕ) (50)

m

ϑ

2m
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α can be r−dependent

Notice

We can choose
α(r) = α0 + κf (r)

� No conformal invariance

� Still 2 FC constraints and 2 SC constraints. Same number of dof.

� After quantization, constraint γ2 stays the same (except α = α(r))!

Ψl ,ml
(r , θ, ϕ) = R(r)Yl ,ml

(θ, ϕ) (51)

Such that:

r2
d2R

dr2
+ 2r

dR

dr
+ Rr2(ϑ2 − 4m2) + (

α2(r)

4
− l(l + 1))R = 0 (52)

→ Discreet spectrum can be obtained.
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Summary and discussion

Summary

� We have found a conformal invariant action for massless interacting
particles.

� We can give a mass at the particles and break the conformal
invariance as wished.

� We have the liberty to choose α in order to have a continuous or a
discreet spectrum.

Discussion

� Interesting playground: playing with m and α(r), we can easily go from
massive con�ned case to conformal window with continuous spectrum.

� Unparticles: particles described with a scale invariant gauge theory
with a continuous mass spectrum. → S is a good candidate for
unparticles.
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Thank you for your attention !
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