

Two-Particle Problem With Conformal And Gauge Invariance

Guillaume Lhost

UMons

Faculty of Science

Department: Universe Physics, Fields and Gravitation

Internship instructors: N. Boulanger, F. Buisseret

April 21, 2021

UMONS

- 1 Derivation of a conformal invariant action for two massless relativistic particles
- 2 Study of the system using Dirac formalism
- 3 Breaking of the conformal invariance
- 4 Quantization
- 5 Solving the wave equation and discussion

Single free massive particle

Action of a free relativistic particle

$$S = -m \int d\tau \sqrt{-\dot{x}^2} \quad (1)$$

Single free massive particle

Action of a free relativistic particle

$$S = -m \int d\tau \sqrt{-\dot{x}^2} \quad (1)$$

The momenta $p_\mu = \frac{\partial L}{\partial \dot{x}^\mu} = \frac{m\dot{x}_\mu}{\sqrt{-\dot{x}^2}}$ are such that all velocities cannot be expressed as $\dot{x}^\mu = \dot{x}^\mu(x, p)$.

There are **constraints** = functions $\phi^m(p, x)$ which vanish on-shell.

Single free massive particle

Action of a free relativistic particle

$$S = -m \int d\tau \sqrt{-\dot{x}^2} \quad (1)$$

The momenta $p_\mu = \frac{\partial L}{\partial \dot{x}^\mu} = \frac{m \dot{x}_\mu}{\sqrt{-\dot{x}^2}}$ are such that all velocities cannot be expressed as $\dot{x}^\mu = \dot{x}^\mu(x, p)$.

There are **constraints** = functions $\phi^m(p, x)$ which vanish on-shell.

In our case, the constraint is:

$$p^2 + m^2 \approx 0 \quad (2)$$

Hamiltonians and action with the einbein

S is invariant under reparametrization $\tau \rightarrow \tau - \varepsilon(\tau)$.

We can show that the canonical Hamiltonian is equal to zero: $H_c = 0$.

Hamiltonians and action with the einbein

S is invariant under reparametrization $\tau \rightarrow \tau - \varepsilon(\tau)$.

We can show that the canonical Hamiltonian is equal to zero: $H_c = 0$.

Thus,

$$H_E = \frac{e(\tau)}{2}(p^2 + m^2) \quad (3)$$

The arbitrary function $e(\tau)$ is called einbein.

Hamiltonians and action with the einbein

S is invariant under reparametrization $\tau \rightarrow \tau - \varepsilon(\tau)$.

We can show that the canonical Hamiltonian is equal to zero: $H_c = 0$.
Thus,

$$H_E = \frac{e(\tau)}{2}(p^2 + m^2) \quad (3)$$

The arbitrary function $e(\tau)$ is called einbein.

Then:

$$S_E = \int d\tau (p_\mu \dot{x}^\mu - \frac{e}{2}(p^2 + m^2)) \quad (4)$$

Using the stationary condition, we express p_μ as functions of (x^ν, e) and reaches:

Action in the massless case

$$S = \int d\tau \frac{\dot{x}^2}{e} \quad (5)$$

e is a variable.

Conformal invariance

Goal: S must be invariant under:

Conformal invariance

Goal: S must be invariant under:

- **Poincaré transformations:** $x^\mu \rightarrow x'^\mu = a^\mu + \Lambda^\mu_\nu x^\nu$
- **Dilation:** $x^\mu \rightarrow x'^\mu = \lambda x^\mu$
- **Special conformal transformations :** $x^\mu \rightarrow x'^\mu = \frac{x^\mu + \alpha^\mu x^2}{1 + 2\bar{\alpha} \cdot \bar{x} + \alpha^2 x^2}$

Conformal invariance

Goal: S must be invariant under:

- **Poincaré transformations:** $x^\mu \rightarrow x'^\mu = a^\mu + \Lambda^\mu_\nu x^\nu$
- **Dilation:** $x^\mu \rightarrow x'^\mu = \lambda x^\mu$
- **Special conformal transformations :** $x^\mu \rightarrow x'^\mu = \frac{x^\mu + \alpha^\mu x^2}{1 + 2\bar{\alpha} \cdot \bar{x} + \alpha^2 x^2}$

This is checked if the einbein transforms as:

$$e \rightarrow \lambda^2 e \quad \text{under dilation} \tag{6}$$

$$e \rightarrow \frac{e}{x^4} \quad \text{under inversion} \tag{7}$$

Conformal invariant action for two particles

Goal: find action for two interacting particles.

- x_1^μ : coordinates of the particle 1
- x_2^μ : coordinates of the particle 2
- Potential term: function of the relative positions. We define:

$$r^\mu = x_1^\mu - x_2^\mu$$

r^2 transforms under inversion as:

$$r'^2 = \frac{r^2}{x_1^2 x_2^2} \quad (8)$$

Conformal invariant action for two particles

Goal: find action for two interacting particles.

- x_1^μ : coordinates of the particle 1
- x_2^μ : coordinates of the particle 2
- Potential term: function of the relative positions. We define:

$$r^\mu = x_1^\mu - x_2^\mu$$

For two massless interacting relativistic particles, the action is:

$$S = \int d\tau \left(\frac{\dot{x_1}^2}{2e_1} + \frac{\dot{x_2}^2}{2e_2} + \frac{\alpha^2 \sqrt{e_1 e_2}}{4 r^2} \right) \quad (9)$$

$$\alpha > 0.$$

Analysis with Dirac formalism

$$\frac{\partial L}{\partial \dot{e}_i} = 0$$

π_1 and π_2 are two primary constraints.

Analysis with Dirac formalism

$$\frac{\partial L}{\partial \dot{e}_i} = 0$$

π_1 and π_2 are two primary constraints.

Hamiltonians

Canonical Hamiltonian:

$$H_c = \frac{e_1 p_1^2}{2} + \frac{e_2 p_2^2}{2} - \frac{\alpha^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} + \dot{e}_1 \pi_1 + \dot{e}_2 \pi_2 \quad (10)$$

Analysis with Dirac formalism

$$\frac{\partial L}{\partial \dot{e}_i} = 0$$

π_1 and π_2 are two primary constraints.

Hamiltonians

Canonical Hamiltonian:

$$H_c = \frac{e_1 p_1^2}{2} + \frac{e_2 p_2^2}{2} - \frac{\alpha^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} + \dot{e}_1 \pi_1 + \dot{e}_2 \pi_2 \quad (10)$$

We then find the **total Hamiltonian**:

$$H_T = \frac{e_1 p_1^2}{2} + \frac{e_2 p_2^2}{2} - \frac{\alpha^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} + \lambda^1 \pi_1 + \lambda^2 \pi_2 \quad (11)$$

λ_1 and λ_2 are arbitrary functions.

Analysis with Dirac formalism

Hamiltonians

Canonical Hamiltonian:

$$H_c = \frac{e_1 p_1^2}{2} + \frac{e_2 p_2^2}{2} - \frac{\alpha^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} + \dot{e}_1 \pi_1 + \dot{e}_2 \pi_2 \quad (12)$$

We then find the **total Hamiltonian**:

$$H_T = \frac{e_1 p_1^2}{2} + \frac{e_2 p_2^2}{2} - \frac{\alpha^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} + \lambda^1 \pi_1 + \lambda^2 \pi_2 \quad (13)$$

λ_1 and λ_2 are arbitrary functions.

Time derivative of a function:

$$\frac{d}{d\tau} f(x, p) = \{f, H_T\}$$

Analysis with Dirac formalism

The primary constraints must be **stable**:

$$\{\pi_1, H_T\} = \frac{1}{2} \left(-p_1^2 + \frac{\alpha^2}{4r^2} \sqrt{\frac{e_2}{e_1}} \right) := \phi_1 \approx 0 \quad (14)$$

$$\{\pi_2, H_T\} = \frac{1}{2} \left(-p_2^2 + \frac{\alpha^2}{4r^2} \sqrt{\frac{e_1}{e_2}} \right) := \phi_2 \approx 0 \quad (15)$$

ϕ_1 and ϕ_2 are secondary constraints.

Analysis with Dirac formalism

The primary constraints must be **stable**:

$$\{\pi_1, H_T\} = \frac{1}{2} \left(-p_1^2 + \frac{\alpha^2}{4r^2} \sqrt{\frac{e_2}{e_1}} \right) := \phi_1 \approx 0 \quad (14)$$

$$\{\pi_2, H_T\} = \frac{1}{2} \left(-p_2^2 + \frac{\alpha^2}{4r^2} \sqrt{\frac{e_1}{e_2}} \right) := \phi_2 \approx 0 \quad (15)$$

ϕ_1 and ϕ_2 are secondary constraints. We also impose $\{\phi_i; H_T\} \approx 0$:

$$\phi_3 = \frac{\alpha^2}{16r^2} \left(-\lambda_1 \sqrt{\frac{e_2}{e_1^3}} + \lambda_2 \frac{1}{\sqrt{e_1 e_2}} \right) \quad (16)$$

$$+ \frac{\alpha^2}{4r^4} \left(\sqrt{e_1 e_2} p_1 \cdot r + \sqrt{\frac{e_2^3}{e_1}} p_2 \cdot r \right) \quad (17)$$

Analysis with Dirac formalism

ϕ_3 vanishes if:

$$\lambda_1 = \lambda_2 \frac{e_1}{e_2} + \frac{4}{r^2} [e_1^2 p_1 \cdot r + e_1 e_2 p_2 \cdot r] \quad (18)$$

Thus:

Final total Hamiltonian

$$H_T = H_c + \tilde{\lambda}(e_1 \pi_1 + e_2 \pi_2) + C \pi_1 \quad (19)$$

Where $C = \frac{4}{r^2} e_1 (e_1 p_1 \cdot r + e_2 p_2 \cdot r)$.

Analysis with Dirac formalism

Classification of the constraints

- First-class: ϕ is first-class if the Poisson brackets with every constraints vanishes on-shell.
- Second-class: at least one Poisson bracket with a constraint does not vanish on the constraint surface.

Classification of the constraints

- First-class: ϕ is first-class if the Poisson brackets with every constraints vanishes on-shell.
- Second-class: at least one Poisson bracket with a constraint does not vanish on the constraint surface.
- $e_1\pi_1 + e_2\pi_2$ is a primary first-class constraint
- H_T is first-class, so $\{H_T, e_1\pi_1 + e_2\pi_2\}$ too.
- Second-class constraints: π_1 and ϕ_1

Constraints and symmetry generator

In summary: we have two first-class (FC) constraints, a primary and a secondary, and two second-class (SC) constraints, a primary and a secondary too.

Summary

Constraints:

$$\text{FC: } \sigma_1 = e_1\pi_1 + e_2\pi_2 \text{ (primary)} \quad ; \quad \sigma_2 = e_1\phi_1 + e_2\phi_2 - C\pi_1 \quad (20)$$

$$\text{SC: } \pi_1 \text{ (primary)} \quad ; \quad \phi_1 \quad (21)$$

Constraints and symmetry generator

In summary: we have two first-class (FC) constraints, a primary and a secondary, and two second-class (SC) constraints, a primary and a secondary too.

Summary

Constraints:

$$\text{FC: } \sigma_1 = e_1\pi_1 + e_2\pi_2 \text{ (primary)} \quad ; \quad \sigma_2 = e_1\phi_1 + e_2\phi_2 - C\pi_1 \quad (20)$$

$$\text{SC: } \pi_1 \text{ (primary)} \quad ; \quad \phi_1 \quad (21)$$

Symmetry generator

We can compute the **symmetry generator** thanks to the "chain algorithm":

$$G = \frac{d}{d\tau}(\varepsilon e_1)\pi_1 + \frac{d}{d\tau}(\varepsilon e_2)\pi_2 - (\varepsilon e_1)\phi_1 - (\varepsilon e_2)\phi_2 \quad (22)$$

Constraints and symmetry generator

Symmetry generator

We can compute the symmetry generator thanks to the "chain algorithm":

$$G = \frac{d}{d\tau}(\varepsilon e_1)\pi_1 + \frac{d}{d\tau}(\varepsilon e_2)\pi_2 - (\varepsilon e_1)\phi_1 - (\varepsilon e_2)\phi_2$$

Symmetry transformations:

$$\delta e_i = \frac{d}{d\tau}(\varepsilon e_i) \quad \delta x_i^\mu = \varepsilon \dot{x}_i^\mu \quad (23)$$

$\varepsilon(\tau)$ is a time-dependent arbitrary function.

degrees of freedom

$$\#dof = \#\text{phase space variables} - \#\text{SC constraints} - 2.\#\text{FC constraints}$$

degrees of freedom

$$\#dof = \#\text{phase space variables} - \#\text{SC constraints} - 2.\#\text{FC constraints}$$

Counting of the dof

Massless interacting case:

$$\#dof = 14$$

degrees of freedom

$$\#dof = \#\text{phase space variables} - \#\text{SC constraints} - 2.\#\text{FC constraints}$$

Counting of the dof

Massless interacting case:

$$\#dof = 14$$

If we turn off the interaction:

$$\#dof = 12$$

Free case should be studied independently

Massive case

We add a mass m at the particles:

Action in massive case

$$S = \int d\tau \left[\frac{\dot{x}_1^2}{2e_1} + \frac{\dot{x}_2^2}{2e_2} - m^2 \left(\frac{e_1 + e_2}{2} \right) + \frac{\alpha_m^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} \right] \quad (24)$$

We have conformal invariance if $m = 0$.

Massive case

We add a mass m at the particles:

Action in massive case

$$S = \int d\tau \left[\frac{\dot{x}_1^2}{2e_1} + \frac{\dot{x}_2^2}{2e_2} - m^2 \left(\frac{e_1 + e_2}{2} \right) + \frac{\alpha_m^2}{4} \frac{\sqrt{e_1 e_2}}{r^2} \right] \quad (24)$$

We have conformal invariance if $m = 0$.

Total Hamiltonian:

$$H_{Tm} = H_{T0} + \left(\frac{e_1 + e_2}{2} \right) m^2 \quad (25)$$

Massive case

Constraints

$$\text{FC: } \sigma_{1m} \text{ (primary)} ; \sigma_{2m} \quad (26)$$

$$\text{SC: } \pi_1 \text{ (primary)} ; \phi_{1m} \quad (27)$$

Such that:

$$\phi_{1m} = \phi_{1m=0} - \frac{m^2}{2} \quad (28)$$

$$\phi_{2m} = \phi_{2m=0} - \frac{m^2}{2} \quad (29)$$

$$\sigma_{1m} = e_1 \pi_1 + e_2 \pi_2 = \sigma_{1m=0} \quad (30)$$

$$\sigma_{2m} = e_1 \phi_{1m} + e_2 \phi_{2m} - C \pi_1 \quad (31)$$

Massive case

Constraints

$$\text{FC: } \sigma_{1m} \text{ (primary)} ; \sigma_{2m} \quad (32)$$

$$\text{SC: } \pi_1 \text{ (primary)} ; \phi_{1m} \quad (33)$$

We count one symmetry generator:

$$G_m = \dot{\varepsilon} \sigma_{1m} + \tilde{\lambda}_2 \sigma_{1m} - \sigma_{2m} \quad (34)$$

And 14 degrees of freedom in phase space:

$$\#dof = 20 - 2 - 2 \cdot 4 = 14$$

Killing vectors

Adding a mass at the particle breaks the conformal invariance.

Noether charges

$$Q = \sum_i \zeta_i^\mu(x_1, x_2) p_{i\mu} \quad (35)$$

$\zeta_i^\mu(x_1, x_2)$ are the Killing vectors and $p_{i\mu} = \frac{\partial L}{\partial \dot{x}_i^\mu}$.

$\dot{Q} = 0$ imposes conditions to the Killing vectors.

Killing vectors, massless case

Massless case

We find that Killing vectors must obey the conformal Killing equation:

$$\partial_{i(\gamma} \zeta_{i\mu)}(x_i) = \frac{1}{4} \eta_{\gamma\mu} \partial_i^\alpha \zeta_{i\alpha} \quad (36)$$

Killing vectors, massless case

Massless case

We find that Killing vectors must obey the conformal Killing equation:

$$\partial_{i(\gamma} \zeta_{i\mu)}(x_i) = \frac{1}{4} \eta_{\gamma\mu} \partial_i^\alpha \zeta_{i\alpha} \quad (36)$$

Therefore, there is conformal invariance and thus 15 independent vectors:

$$\zeta_i^\mu = a^\mu + M^{\mu\nu} x_{i\nu} + \lambda x_i^\mu + B^\nu (\eta_\nu^\mu x_i^2 - 2x_{i\nu} x_i^\mu) \quad (37)$$

15 conserved quantities

- Translations: $P_\mu = p_{1\mu} + p_{2\mu}$
- Rotations: $L_{[\mu\nu]} = x_{1\mu} p_{1\nu} + x_{2\mu} p_{2\nu} - x_{1\nu} p_{1\mu} - x_{2\nu} p_{2\mu}$
- Dilation: $D = x_1^\nu p_{1\nu} + x_2^\nu p_{2\nu}$
- SCT: $S_\mu = x_1^2 p_{1\mu} + x_2^2 p_{2\mu} - 2x_{1\mu} x_1^\nu p_{1\nu} - 2x_{2\mu} x_2^\nu p_{2\nu}$

Killing vectors, massive case

In the massive case, we do not have the conformal Killing equation:

$$\partial_{i(\mu} \zeta_{i\nu)}(x_i) = 0 \quad (38)$$

The conformal symmetry is **broken**.

Poincaré transformations

- Translations: $P_\mu = p_{1\mu} + p_{2\mu}$
- Rotations: $L_{[\mu\nu]} = x_{1\mu}p_{1\nu} + x_{2\mu}p_{2\nu} - x_{1\nu}p_{1\mu} - x_{2\nu}p_{2\mu}$

Quantization, Dirac method

Quantization of second-class constraints

- Suppose $\hat{\chi}_\alpha |\psi\rangle = 0$. Thus $[\hat{\chi}_\beta, \hat{\chi}_\alpha] |\psi\rangle = 0$.
- But the matrix $[\hat{\chi}_\beta, \hat{\chi}_\alpha]$ is invertible by definition $\implies |\psi\rangle = 0$. (We don't want this).

Thus we use the Dirac brackets in order to cancel the second-class constraints.

Dirac brackets

$$[F; G]^* := \{F; G\} - \{F; \chi_\alpha\} (C^{-1})^{\alpha\beta} \{\chi_\beta; G\}$$

$$C_{\alpha\beta} = \{\chi_\alpha, \chi_\beta\}$$

Quantization of second-class constraints

- Suppose $\hat{\chi}_\alpha |\psi\rangle = 0$. Thus $[\hat{\chi}_\beta, \hat{\chi}_\alpha] |\psi\rangle = 0$.
- But the matrix $[\hat{\chi}_\beta, \hat{\chi}_\alpha]$ is invertible by definition $\Rightarrow |\psi\rangle = 0$. (We don't want this).

Thus we use the Dirac brackets in order to cancel the second-class constraints. These latter are mapped on a trivial operator.

Correspondence rule

$$[\hat{A}; \hat{B}] = i\hbar \widehat{[A; B]}^* \quad (39)$$

$$\chi_\alpha = 0 \Rightarrow \hat{\chi}_\alpha = \hat{0} \quad (40)$$

Reduced space quantization

Reduced space quantization

- We define gauge conditions C_b : after gauge fixing, any function of canonical variables can be viewed as the restriction in that gauge of a gauge invariant function.
- $\det(\{C_b, FC_\alpha\}) \neq 0$.
- Quantization of FC constraints and gauge conditions \approx quantization of SC constraints.

Center of mass coordinates

$$p_+^\mu = p_1^\mu + p_2^\mu \quad (41)$$

$$p_-^\mu = p_1^\mu - p_2^\mu \quad (42)$$

$$q_+^\mu = \frac{1}{2}(x_1^\mu + x_2^\mu) \quad (43)$$

$$q_-^\mu = \frac{1}{2}(x_1^\mu - x_2^\mu) \quad (44)$$

Second-class constraints are dropped:

FC constraints in CM coordinates with $SC = 0$

$$\gamma_1 = \pi_2 \approx 0$$

$$\gamma_2 = (p_+^2 + p_-^2 + 4m^2 - 2p_+ \cdot p_-)(p_+^2 + p_-^2 + 4m^2 + 2p_+ \cdot p_-) - \frac{\alpha^4}{16q_-^4} \approx 0$$

Gauge conditions

There are two first-class constraints \Rightarrow we can fix two independent gauge conditions.

Relevant gauge conditions

$$G_1 := p_+^\gamma p_{-\gamma} \approx 0 \quad G_2 := e_1 e_2 - 1 \approx 0 \quad (45)$$

- $p_+ = (M, 0, 0, 0)$ and $p_- = (0, \vec{p}_-)$
- $p_1^2 = p_2^2$: equitable energy distribution
- Via EOM: $e_1 = e_2 = 1$ and $q_- = (0, \vec{q}_-)$

Gauge conditions

In particular, the constraint γ_2 becomes:

$$(\hat{p}_+^2 + \hat{p}_-^2 + 4m^2)^2 = \frac{\alpha^4}{16\hat{q}_-^4} \quad (46)$$

Consider the operator \hat{M}^2 :

$$\hat{M}^2 = M^2 \mathbb{1} = 4m^2 \mathbb{1} + \hat{\vec{p}}_-^2 - \frac{\alpha^2}{4\hat{\vec{q}}_-^2} \quad (47)$$

A physical state is an eigenstate of \hat{M}^2 with the eigenvalue ϑ^2 :

$$\hat{M}^2 |\Psi\rangle = \vartheta^2 |\Psi\rangle \quad (48)$$

Equation

$$\left(4m^2 - \Delta_- - \frac{\alpha^2}{4\vec{q}_-^2}\right) \Psi(q_-^\mu, q_+^\mu) = \vartheta^2 \Psi(q_-^\mu, q_+^\mu) \quad (49)$$

Solution

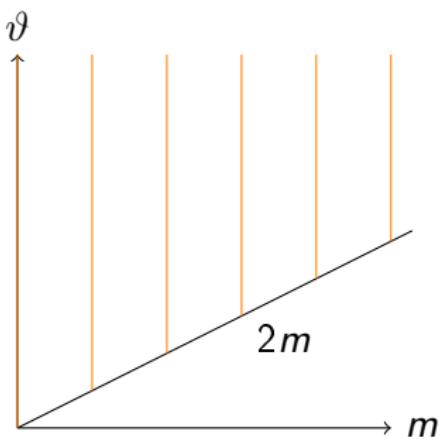
$$\Psi(r, \theta, \varphi) = A \sqrt{\frac{\pi}{2r\sqrt{\vartheta^2 - 4m^2}}} J_\phi(\sqrt{\vartheta^2 - 4m^2} r) Y_{l,m_l}(\theta, \varphi) \quad (50)$$

Equation

$$\left(4m^2 - \Delta_- - \frac{\alpha^2}{4\vec{q}_-^2}\right) \Psi(q_-^\mu, q_+^\mu) = \vartheta^2 \Psi(q_-^\mu, q_+^\mu) \quad (49)$$

Solution

$$\Psi(r, \theta, \varphi) = A \sqrt{\frac{\pi}{2r\sqrt{\vartheta^2 - 4m^2}}} J_\phi(\sqrt{\vartheta^2 - 4m^2} r) Y_{l,m_l}(\theta, \varphi) \quad (50)$$



α can be r -dependent

Notice

We can choose

$$\alpha(r) = \alpha_0 + \kappa f(r)$$

- No conformal invariance
- Still 2 FC constraints and 2 SC constraints. Same number of dof.
- After quantization, constraint γ_2 stays the **same** (except $\alpha = \alpha(r)$)!

$$\Psi_{I,m_I}(r, \theta, \varphi) = R(r) Y_{I,m_I}(\theta, \varphi) \quad (51)$$

Such that:

$$r^2 \frac{d^2 R}{dr^2} + 2r \frac{dR}{dr} + R r^2 (\vartheta^2 - 4m^2) + \left(\frac{\alpha^2(r)}{4} - I(I+1) \right) R = 0 \quad (52)$$

→ Discrete spectrum can be obtained.

Summary and discussion

Summary

- We have found a conformal invariant action for massless interacting particles.
- We can give a mass at the particles and break the conformal invariance as wished.
- We have the liberty to choose α in order to have a continuous or a discreet spectrum.

Summary and discussion

Summary

- We have found a conformal invariant action for massless interacting particles.
- We can give a mass at the particles and break the conformal invariance as wished.
- We have the liberty to choose α in order to have a continuous or a discreet spectrum.

Discussion

- Interesting playground: playing with m and $\alpha(r)$, we can easily go from massive confined case to conformal window with continuous spectrum.
- Unparticles: particles described with a scale invariant gauge theory with a continuous mass spectrum. $\rightarrow S$ is a good candidate for unparticles.

Thank you for your attention !

Bibliography

- 1 Lesson from UWATERLOO (Canada): Bessel functions of the first and second kind.
- 2 Xavier Bekaert and Jeong-Hyuck Park. Symmetries and dynamics in constrained systems. *The European Physical Journal C*, 61(1):141, March 2009.
- 3 Roberto Casalbuoni and Joaquim Gomis. Conformal symmetry for relativistic point particles. *Phys. Rev. D*, 90:026001, Jul 2014.
- 4 Leonardo Castellani. Symmetries in constrained hamiltonian systems. *Annals of Physics*, 143(2):357–371, 1982.
- 5 Michael Eastwood. Notes on conformal differential geometry. In *Proceedings of the 15th Winter School "Geometry and Physics"*, pages [57]–76. Circolo Matematico di Palermo, 1996.
- 6 Howard Georgi. Unparticle physics. *Phys. Rev. Lett.*, 98:221601, 2007.

Bibliography

- 7 J Gomis, M Henneaux, and J M Pons. Existence theorem for gauge symmetries in hamiltonian constrained systems. *Classical and Quantum Gravity*, 7(6):1089–1096, jun 1990.
- 8 Petersen Lyng Jens. Introduction to the malcedana conjecture on ads/cft. *International Journal of Modern Physics A*, 14(23):3597–3672, sept 1999.
- 9 Henneaux Marc. Quantization of gauge systems / Marc Henneaux and Claudio Teitelboim. Princeton University Press, Princeton (N.J.), C 1992.
- 10 H. Nikolic. Unparticle as a particle with arbitrary mass. arXiv:0801.4471 [hep-ph, physics:hep-th], July 2008. arXiv: 0801.4471 version: 3.
- 11 Spindel Philippe. Mécanique, volume 2, Mécanique analytique. Contemporary Publishing International - GB Science Publishers, Paris (France), 2002.