
�Qui est-ce ?� version Alice et Bob

par Justin Vast

Un rappel 2/24

Soit q une puissance d'un nombre premier, et soit Fq l'unique corps (à isomorphisme près)
à q éléments.

Un code de longueur n sur l'alphabet Fq est un sous-ensemble non-vide C �Fq
n, et ses

éléments sont les mots du code.

Un code linéaire C de longueur n est un sous-espace vectoriel de Fq
n.

La distance de Hamming entre deux mots x; y 2Fq
n est le nombres de coordonnées

distinctes entre x et y. Plus formellement, d(x; y) :=#fi2f1; � � � ; ngjxi=/ yig.

La distance minimale d'un code C �Fq
n est définie par

d(C) :=min fd(x; y) jx; y 2C ; x=/ yg

Un code détecte d(C)− 1 erreurs, et en corrige
j
d(C)− 1

2

k
.

Si C �Fq
n est un code linéaire de dimension k :

On dit que M 2M(n� k;Fq) est une matrice génératrice du code C si ses colonnes
forment une base de C en tant que Fq-espace vectoriel.

On dit que A2M((n−k)�n;Fq) est une matrice de contrôle du code C si C=KerA.

Proposition : La distance minimale d'un code linéaire C est la plus petite quantité de
colonnes de A nécessaires pour former un ensemble linéairement dépendant.

Pour v2Fqn, le vecteur s(v) :=Av2Fqn−k est appelé syndrome de v, où A est une matrice
de contrôle de C. Si z=x+ e (avec x2C), alors s(z)= s(e), donc le syndrome du message
reçu est le syndrome des erreurs commises.

Le code de Hamming C �F2
7 est le code dont une matrice de contrôle et une matrice

génératrice sont respectivement

A=

0@ 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1A et M =

0BBBBBBBBBBBBBBBBBB@

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

1CCCCCCCCCCCCCCCCCCA
Sa distance minimale vaut 3 (il corrige donc une erreur).

Par la structure du code de Hamming, pour corriger un mot v2F27 avec au plus une erreur,
on regarde le syndrôme de v : s(v)=A � v ; s'il est nul c'est qu'il n'y a pas d'erreur ; sinon,
s(v) est la ie colonne de A (pour un certain i), et la correction de v est vcorr := v+ ei, où
ei2F27 est nul sauf en sa ie composante.

Un premier jeux 5/24

Jeu 0 : Alice et Bob décident de faire un jeu semblable à Qui est-ce ? avec des nombres.
Alice pense à un nombre entre 0 et 15 (inclus), et Bob doit essayer de déterminer ce nombre
à l'aide de questions auxquelles Alice ne peut répondre que par oui ou par non.

Bob étant adepte des énigmes, il se demande quelle sera la quantité nécessaire et suffisante
de questions qu'il devra poser à Alice, afin d'être sûr de connaître le nombre auquel Alice
pense.

Une stratégie naïve 6/24

Stratégie 0 : Poser au plus 16 questions :

! Q0 : Est-ce que le nombre auquel tu penses est 0 ?

! Q1 : Est-ce que le nombre auquel tu penses est 1 ?

! Q2 : Est-ce que le nombre auquel tu penses est 2 ?

���

! Q15 : Est-ce que le nombre auquel tu penses est 15 ?

Cette stratégie fonctionne, mais elle est loin d'être optimale... Néanmoins, nous savons
maintenant que 16 est une quantité suffisante de questions à poser.

Une meilleure stratégie 7/24

Stratégie 1 : Notons a le nombre auquel Alice pense. On applique l'algorithme de recherche
dans un arbre binaire de recherche (ABR) :

a� 8?

a� 12?

a� 14?

a� 15?

15 14

a� 13?

13 12

a� 10?

a� 11?

11 10

a� 9?

9 8

a� 4?

a� 6?

a� 7?

7 6

a� 5?

5 4

a� 2?

a� 3?

3 2

a� 1?

1 0

On en déduit que 4 est une est une quantité suffisante de questions à poser, et clairement,
cette quantité est également nécessaire.

Remarquons que si 1 :=oui et 0 :=non, alors la suite des réponses d'Alice est l'écriture
de a en base 2. Par exemple, si a=7, la suite des réponses d'Alice est 0111, et 7= 01112.

Alice et Bob se sont bien amusés, mais c'était un peu facile, soyons honnêtes. . . il est
maintenant temps de compliquer les choses !

Une variante du jeu précédent 9/24

Jeu 1 : Alice pense de nouveau à un nombre entre 0 et 15 (inclus), et Bob doit toujours
essayer de déterminer ce nombre à l'aide de questions auxquelles Alice ne peut répondre
que par oui ou par non. Cependant, Alice peut faire exprès de donner au plus une fausse
réponse (répondre oui au lieu de non, et vice versa).

Cette fois-ci, quelle sera la quantité nécessaire et suffisante de questions que Bob devra poser
à Alice, afin d'être sûr de connaître le nombre auquel Alice pense ?

Une plutôt bonne stratégie 10/24

Stratégie 0 : Alice pense à a=7. Bob a imaginé un algorithme basé sur la stratégie de
l'ABR du jeu précédent ; voici des questions-réponses possibles :

a� 8? non a� 8? non a� 8? non a� 8? oui
a� 8? non a� 8? non a� 8? non a� 8? non
a� 4? non a� 4? oui a� 4? oui a� 8? non
a� 4? oui a� 4? oui a� 4? oui a� 4? oui
a� 4? oui a� 6? oui a� 6? oui a� 6? oui
a� 6? oui a� 6? oui a� 6? oui a� 7? oui
a� 7? oui a� 7? oui a� 7? oui

a� 7? non a� 7? oui
a� 7? oui

Voyez-vous l'algo qui se cache derrière ?

L'algorithme 11/24

A − 0
b −True (b = � aucune erreur n'a encore été commise par Alice �)
FOR i=0! 3 :

� a�A+23−i ?� : ai − réponse
IF b :

� a�A+23−i ?� : bi − réponse
IF ai=/ bi :

b − False
� a�A+23−i ?� : ci − réponse
A −A+23−ici

ELSE : A −A+23−iai
ELSE : A −A+23−iai

RETURN A

Améliorons les choses... 12/24

On peut montrer que grâce à l'algo qui vient d'être présenté, il est suffisant de poser 9
questions ; mais est-ce nécessaire d'en poser autant ?

Il serait judicieux d'utiliser la théorie des codes correcteurs d'erreurs !

Notons n2N la quantité nécessaire et suffisante de questions que Bob doit poser à Alice
pour s'assurer d'avoir deviné a2f0; 1; � � �; 15g. Par la stratégie 0 , n� 9.

Attention, Bob peut potentiellement avoir deviné a en utilisant moins de n questions ! Quitte
à poser des questions supplémentaires inutiles, on peut supposer que Bob posera toujours
n questions.

Les réponses d'Alice seront représentées sous la forme de vecteurs 2F2n, où la composante
i du vecteur représente la réponse à la question i de Bob (rappel : 1 :=oui et 0 :=non).

On suppose que Bob pose les bonnes questions, i.e. il pourra toujours déterminer a après
avoir posé ses n questions. Note importante : Bob s'est fixé une première question à poser,
mais les questions suivantes dépendent potentiellement des réponses déjà données par Alice.

Puisque Bob va poser n questions, il y a 2n possibilités de réponses à celles-ci.

On sait qu'Alice peut commettre volontairement au plus 1 erreur parmi ses n réponses ;
donc pour chaque a2f0; 1; � � �; 15g, il existe exactement n+1 possibilités de réponses de
la part d'Alice.

Par hypothèse, Bob est capable de déterminer (sans aucun doute possible) le nombre auquel
Alice pense, en utilisant uniquement les réponses données par Alice. Ainsi, 16 (n+1)� 2n,
d'où n� 7.

7 est donc une quantité nécessaire de questions à poser ; mais est-elle suffisante ? Nous
allons voir que oui !

Stratégie 1 : Demander à Alice de précalculer l'écriture binaire du nombre a auquel elle
pense (e.g. 00102 pour 2, 10112 pour 11) (cette demande n'est pas considérée comme une
question). Disons que l'écriture binaire de a est abin= a0a1a2a32F24. Les 7 questions sont
les suivantes (l'ordre n'a pas d'importance en réalité) :

Q1 : a0+ a1+ a3=1(2F2) ? Q5 : a1=1 ?
Q2 : a0+ a2+ a3=1 ? Q6 : a2=1 ?

Q3 : a0=1 ? Q7 : a3=1 ?
Q4 : a1+ a2+ a3=1 ?

Remarquons que poser ces questions revient
à demander de calculer M � abin, où

M =

0BBBBBBBBBBBBBBBBBB@

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

1CCCCCCCCCCCCCCCCCCA
etM est exactement une matrice génératrice du code de Hamming , qui rappelons-le, corrige
1 erreur, ce qui est exactement ce que nous recherchions !

Il faut maintenant corriger l'erreur, en utilisant le syndrôme du vecteur v des réponses aux
questions (on a v :=M � abin+ e où e est un certain vecteur d'erreurs) :

s(v)=A � v 2F23

où

A=

0@ 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1A
Si s(v)= 02F23, c'est qu'Alice n'a commis aucune erreur, et la correction de v est simple-
ment vcorr := v.

Sinon, s(v) est la ie colonne de A pour un certain i, et la correction de v est vcorr := v+ ei
où ei2F27 est le vecteur qui vaut 0 partout sauf en la ie composante.

Maintenant, nous savons que vcorr=M � abin ; ainsi, si P =

0BBBBBB@
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1CCCCCCA, on a

P � vcorr=P �M � abin= I4 � abin= abin

(rappelons que M =

0BBBBBBBBBBBBBBBBBB@

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

1CCCCCCCCCCCCCCCCCCA
), et on récupère finalement a à partir de abin !

En conclusion, 7 est bien la quantité nécessaire et suffisante de questions que Bob doit poser
à Alice afin de déterminer le nombre auquel elle pense.

Voyons un exemple... Alice pense à a= 12.

Bob lui demande d'écrire a en base 2 : abin= a0a1a2a3= 1100

Bob pose les 7 questions (i.e. il lui demande de calculer M � abin), et voici le vecteur des
réponses d'Alice : v=0011100.

Bob calcule le syndrome de v : s(v)=A �v=010, ce qui est exactement la deuxième colonne
de A. Par conséquent, vcorr= v+ e2=0111100.

Enfin, Bob calcule P � vcorr= 1100, c'est-à-dire l'écriture de a= 12 en base 2.

A=

0BB@ 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

1CCA

M =

0BBBBBBBBBBBBBBBBBB@

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

1CCCCCCCCCCCCCCCCCCA
P =

0BBBBBB@
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1CCCCCCA

Un jeu alternatif un peu plus général 20/24

Remarquons que pour cette dernière stratégie, les questions qui ont été posées ne dépendent
pas des réponses données par Alice.

Analysons une version alternative du jeu 1 :

Jeu 2 : Alice pense à un nombre (naturel) a compris entre 0 et m− 1 (inclus), et Bob doit
essayer de déterminer ce nombre à l'aide de questions auxquelles Alice ne peut répondre que
par oui ou par non. Alice peut commettre volontairement au plus r erreurs. On suppose
que Bob a préfixé ses questions, càd que celles-ci ne dépendront pas des réponses données
par Alice.

Quelles est la quantité n nécessaire et suffisante de questions que Bob doit poser à Alice
afin de déterminer a avec exactitude ?

La question du jeu 2 est un problème difficile à résoudre dans le cas général. Cependant :

Théorème. Les assertions suivantes sont équivalentes :

i. Il faut et il suffit à Bob de poser n questions à Alice pour déterminer a selon les règles
du jeu 2.

ii. Il existe un code C �F2
n (pas forcément linéaire), de taille jC j �m, et de distance

minimale d(C)� 2r+1 ; et pour tout code C 0�F2
n 0 avec n0<n, si jC 0j �m, alors

d(C 0)< 2r+1.

La preuve n'est pas excessivement compliquée.

Des bornes 22/24

Notons

bq(n; r) :=
X
i=0

r �
n
i

�
(q− 1)i

Borne de Hamming. Soit C �Fq
n un code (pas forcément linéaire) de distance minimale

d(C)� 2r+1. Alors

jC j � bq(n; r)� qn

Indication de preuve :
F
x2CB[x; r]�Fq

n, où B[x; r] est la boule fermée de centre x et de
rayon r (pour la distance de Hamming).

Avec les données du jeu 1 , on a jC j= 16, q=2, r=1, la borne de Hamming nous donne :

16(n+1)� 2n; càd n� 7

Voici d'autres bornes spécifiques aux codes linéaires C �Fq
n avec jC j= qk

Borne de Singleton. k+ d(C)�n+1

Borne de Plotkin. d(C)� nqk−1(q− 1)
qk− 1

On a également une borne � dans l'autre sens �, qui donne cette fois-ci l'existence de codes
(linéaires) :

Borne de Gilbert-Varshamov. Si

qn−k+1>bq(n; 2r)

alors il existe un code linéaire C �Fq
n avec jC j= qk et de distance minimale d(C)�2r+1.

On veut trouver le n minimal pour lequel la borne de Gilbert-Varshamov est satisfaite
avec les données du jeu 1 (k = 4, q = 2, r = 1), càd 2n−3> 1 + n+

n(n− 1)
2

, ou encore
2n−2>n2+n+2 ; on trouve n=9 (moins bien que 7).

