«Qui est-ce ?» version Alice et Bob

PAR JUSTIN VAST



Un rappel 2/24

Soit ¢ une puissance d'un nombre premier, et soit I, I'unique corps (a isomorphisme prés)
a ¢ éléments.

Un code de longueur n sur ['alphabet I, est un sous-ensemble non-vide C C I/, et ses
éléments sont les mots du code.

Un code linéaire C de longueur n est un sous-espace vectoriel de IF".

La distance de Hamming entre deux mots x, y € [} est le nombres de coordonnées
distinctes entre x et y. Plus formellement, d(z, y):=#{ie {1, - . n}|lx;+ y:}.

La distance minimale d'un code C C I’ est définie par

d(C):=min{d(z,y) |z, yeC,x+y}

Un code détecte d(C) — 1 erreurs, et en corrige V(C;_lJ.



Si C C I} est un code linéaire de dimension & :

On dit que M € M(n x k, F,) est une matrice génératrice du code C si ses colonnes
forment une base de C en tant que I -espace vectoriel.

On dit que A€ M((n —k) xn,[F,) est une matrice de contréle du code C si C =Ker A.

Proposition : La distance minimale d'un code linéaire C est la plus petite quantité de
colonnes de A nécessaires pour former un ensemble linéairement dépendant.

Pour v € F7, le vecteur s(v):= Av e F" % est appelé syndrome de v, ou A est une matrice
q q y

de contréle de C. Si z=x+ ¢ (avec x € ), alors s(z) = s(e), donc le syndrome du message
recu est le syndrome des erreurs commises.



Le code de Hamming C C IF] est le code dont une matrice de contréle et une matrice
génératrice sont respectivement

(1101\

1011

1010101 1000
A=l 0110011 |et M=| 0111
0001111 0100
0010

\0o001)

Sa distance minimale vaut 3 (il corrige donc une erreur).

Par la structure du code de Hamming, pour corriger un mot v € IF4 avec au plus une erreur,
on regarde le syndréme de v : s(v) = A-v; s'il est nul c'est qu'il n'y a pas d’erreur ; sinon,
s(v) est la i¢ colonne de A (pour un certain %), et la correction de v est Vo := ¥ + €;, OU
e; € IFJ est nul sauf en sa i composante.



Un premier jeux 5/24

Jeu 0 : Alice et Bob décident de faire un jeu semblable & Qui est-ce 7 avec des nombres.
Alice pense a un nombre entre 0 et 15 (inclus), et Bob doit essayer de déterminer ce nombre
a l'aide de questions auxquelles Alice ne peut répondre que par OUI ou par NON.

Bob étant adepte des énigmes, il se demande quelle sera la quantité nécessaire et suffisante
de questions qu'il devra poser & Alice, afin d'étre siir de connaitre le nombre auquel Alice
pense.



Une stratégie naive

Stratégie 0 : Poser au plus 16 questions :
— QO : Est-ce que le nombre auquel tu penses est 0 7
— Q1 : Est-ce que le nombre auquel tu penses est 17

— Q2 : Est-ce que le nombre auquel tu penses est 27

— Q15 : Est-ce que le nombre auquel tu penses est 157

Cette stratégie fonctionne, mais elle est loin d'étre optimale... Néanmoins, nous savons
maintenant que 16 est une quantité suffisante de questions a poser.



Une meilleure stratégie 7/24

Stratégie 1 : Notons a le nombre auquel Alice pense. On applique I'algorithme de recherche
dans un arbre binaire de recherche (ABR) :



On en déduit que 4 est une est une quantité suffisante de questions a poser, et clairement,
cette quantité est également nécessaire.

Remarquons que si 1 :=0OUI et 0 := NON, alors la suite des réponses d'Alice est |'écriture
de a en base 2. Par exemple, si a =7, la suite des réponses d'Alice est 0111, et 7=01115.

Alice et Bob se sont bien amusés, mais c'était un peu facile, soyons honnétes... il est
maintenant temps de compliquer les choses !



Une variante du jeu précédent

Jeu 1 : Alice pense de nouveau a un nombre entre 0 et 15 (inclus), et Bob doit toujours
essayer de déterminer ce nombre 3 |'aide de questions auxquelles Alice ne peut répondre
que par OUI ou par NON. Cependant, Alice peut faire exprés de donner au plus une fausse
réponse (répondre OUT au lieu de NON, et vice versa).

Cette fois-ci, quelle sera la quantité nécessaire et suffisante de questions que Bob devra poser
a Alice, afin d'étre siir de connaitre le nombre auquel Alice pense ?



Une plutét bonne stratégie

Stratégie 0 : Alice pense a a =7. Bob a imaginé un algorithme basé sur la stratégie de
I'’ABR du jeu précédent ; voici des questions-réponses possibles :

a> 87
a> 87
a>47
a>47
a>47
a>67
a>"T77

Voyez-vous |'algo qui se cache derriére 7

NON
NON
NON
OUI
OUI
OUI
OUI

a > 87
a > 87
a>47
a>47
a>67
a>67
a>"T77
a>"T77
a>"T77

NON
NON
OUI
OUI
OUI
OUI
OUI
NON
OUI

a > &7
a > &7
a>47
a>47
a> 67
a> 67
a>"T7
a>"T7

NON
NON
OUI
OUI
OUI
OUI
OUI
OUI

a > 87
a > K7
a > &7
a>47
a>67
a>"T77

OUI
NON
NON
OUI
OUI
OUI



L algorithme 11/24

A<+—0
b <—True (b = «aucune erreur n'a encore été commise par Alice »)
FORi=0—3:
«a>A+23""7» 1 a;+— réponse
IF b :
«a>A+23""7» 1 by <— réponse
|F a@#b@ .
b «+— False
«a>A+23""7y 1 ¢;<— réponse
A<+— A—|—23_ici
ELSE : A<— A+2%"q;
ELSE : A<+— A+2%"q;
RETURN A



Améliorons les choses. ..

On peut montrer que grace a l'algo qui vient d'étre présenté, il est suffisant de poser 9
questions ; mais est-ce nécessaire d'en poser autant ?

Il serait judicieux d'utiliser la théorie des codes correcteurs d'erreurs !



Notons n € N la quantité nécessaire et suffisante de questions que Bob doit poser a Alice
pour s'assurer d'avoir deviné a € {0, 1, ---,15}. Par la stratégie 0, n <9.

Attention, Bob peut potentiellement avoir deviné a en utilisant moins de n questions! Quitte
a poser des questions supplémentaires inutiles, on peut supposer que Bob posera toujours
1 questions.

Les réponses d'Alice seront représentées sous la forme de vecteurs €1, ou la composante
¢ du vecteur représente la réponse a la question ¢ de Bob (rappel : 1:=0UI et 0 :=NON).

On suppose que Bob pose les bonnes questions, i.e. il pourra toujours déterminer a apreés
avoir posé ses 1 questions. Note importante : Bob s'est fixé une premiére question a poser,
mais les questions suivantes dépendent potentiellement des réponses déja données par Alice.



Puisque Bob va poser n questions, il y a 2" possibilités de réponses a celles-ci.

On sait qu'Alice peut commettre volontairement au plus 1 erreur parmi ses n réponses ;
donc pour chaque a € {0,1,---, 15}, il existe exactement n + 1 possibilités de réponses de
la part d’Alice.

Par hypothése, Bob est capable de déterminer (sans aucun doute possible) le nombre auquel
Alice pense, en utilisant uniquement les réponses données par Alice. Ainsi, 16 (n+ 1) <2",
doun>7.

7 est donc une quantité nécessaire de questions a poser ; mais est-elle suffisante 7 Nous
allons voir que oui !



Stratégie 1 : Demander a Alice de précalculer |'écriture binaire du nombre a auquel elle
pense (e.g. 00102 pour 2, 10115 pour 11) (cette demande n’est pas considérée comme une
question). Disons que I'écriture binaire de a est ayi, = apaiasas € [F$. Les 7 questions sont
les suivantes (I'ordre n'a pas d'importance en réalité) :

Ql:ao—l—a1+a3:1(€1F2)? Q5:a;=17
Q2:CLO—|—CL2—|—CL3:1? Q6ZCL2:1?
Q3:ap=17 Q7 :a3=17

Q4 : CL1—|—CL2—|-CL3:1?




Remarquons que poser ces questions revient
a demander de calculer M - ay,;,, ou

(110 1)
1011
1000
M=[ 0111
0100
0010
\ 000 1)

et M est exactement une matrice génératrice du code de Hamming, qui rappelons-le, corrige
1 erreur, ce qui est exactement ce que nous recherchions !



Il faut maintenant corriger |'erreur, en utilisant le syndrome du vecteur v des réponses aux
questions (on a v:= M - ap;, + € ol e est un certain vecteur d’erreurs) :

s(v)=A-veTF;

ou
1010101

A=l 01 100 11

00011T1]1

Si s(v)=0¢€ 3, c'est qu'Alice n'a commis aucune erreur, et la correction de v est simple-
ment Veor i = 0.

Sinon, s(v) est la 7 colonne de A pour un certain i, et la correction de v est Ve :=v +¢;
ol e; € IFJ est le vecteur qui vaut 0 partout sauf en la i¢ composante.



0010000
Maintenant, nous savons que VUeorr = M - apiy ; ainsi, si P = 8 8 8 8 é (1) 8 , on a
000000 1

P'Ucorr:P'M'abin:H4'abin:abin

(rappelons que M = ), et on récupére finalement a a partir de ap;, !

SO OO = ==
OO = = OO M=
O Or OO
_ OOk O =

En conclusion, 7 est bien la quantité nécessaire et suffisante de questions que Bob doit poser
a Alice afin de déterminer le nombre auquel elle pense.



Voyons un exemple... Alice pense a a = 12.
Bob lui demande d'écrire a en base 2 : ay;, = apaiasas = 1100

Bob pose les 7 questions (i.e. il lui demande de calculer M - ay,;y), et voici le vecteur des
réponses d'Alice : v=0011100.

Bob calcule le syndrome de v : s(v) = A-v =010, ce qui est exactement la deuxiéme colonne
de A. Par conséquent, Ve = v+ €5 =0111100.

Enfin, Bob calcule P - v.,. = 1100, c'est-a-dire |'écriture de a =12 en base 2.

010101

110011

001111

1101

18(1)(1) 00100O00O
011 1 P:0000100
0100 0000O01O0
0010 000O0O0O0T1
0001




Un jeu alternatif un peu plus général

Remarquons que pour cette derniére stratégie, les questions qui ont été posées ne dépendent
pas des réponses données par Alice.

Analysons une version alternative du jeu 1 :

Jeu 2 : Alice pense a un nombre (naturel) @ compris entre 0 et m — 1 (inclus), et Bob doit
essayer de déterminer ce nombre a I'aide de questions auxquelles Alice ne peut répondre que
par OUI ou par NON. Alice peut commettre volontairement au plus r erreurs. On suppose
que Bob a préfixé ses questions, cad que celles-ci ne dépendront pas des réponses données
par Alice.

Quelles est la quantité n nécessaire et suffisante de questions que Bob doit poser a Alice
afin de déterminer a avec exactitude ?



La question du jeu 2 est un probléme difficile & résoudre dans le cas général. Cependant :

Théoreme. Les assertions suivantes sont équivalentes :

i. Il faut et il sufhit 3 Bob de poser n questions a Alice pour déterminer a selon les régles
du jeu 2.

ii. Il existe un code C C Ity (pas forcément linéaire), de taille |C|>m, et de distance
minimale d(C) > 2r 4+ 1 ; et pour tout code C' C Fy avec n' <n, si IC'| > m, alors
d(C") <2r+1.

La preuve n'est pas excessivement compliquée.




Des bornes 2224

Notons

Borne de Hamming. Soit C C I un code (pas forcément linéaire) de distance minimale
d(C)>2r+1. Alors

Cl-by(n,7) < ¢"

Indication de preuve : | | _.Blx,r] CT', ot Blz,r| est la boule fermée de centre x et de
rayon 7 (pour la distance de Hamming).

Avec les données du jeu 1, on a |C|=16, ¢=2, r=1, la borne de Hamming nous donne :

16(n+1)<2" cad n>7



Voici d'autres bornes spécifiques aux codes linéaires C C I} avec |C| = ¢"

Borne de Singleton. k+d(C)<n+1

k=1, _
Borne de Plotkin. d(C) < ng" (¢—1)




On a également une borne « dans |'autre sens », qui donne cette fois-ci |'existence de codes
(linéaires) :

Borne de Gilbert-Varshamov. Si

"> b, (n, 2r)

alors il existe un code linéaire C C 5" avec |C|= ¢" et de distance minimale d(C) >2r +1.

On veut trouver le n minimal pour lequel la borne de Gilbert-Varshamov est satisfaite
avec les données du jeu 1 (k=4, ¢=2, r=1), cad 2" 3 >1+n+ n(n2_ 1),
2""2>n*+n+2; on trouve n =9 (moins bien que 7).

ou €encore



